Expansion in SL 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathbb{R})}$$\end{document} and monotone expanders

被引:0
|
作者
Jean Bourgain
Amir Yehudayoff
机构
[1] Institute for Advanced Study,Department of Mathematics
[2] Technion–IIT,undefined
关键词
Cayley Graph; Explicit Construction; Universal Constant; Product Theorem; Matrix Group;
D O I
10.1007/s00039-012-0200-9
中图分类号
学科分类号
摘要
This work presents an explicit construction of a family of monotone expanders, which are bi-partite expander graphs whose edge-set is defined by (partial) monotone functions. The family is (roughly) defined by the Möbius action of SL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} on the interval [0,1]. A key part of the proof is a product-growth theorem for certain subsets of SL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} . This extends recent results on finite/compact groups to the non-compact scenario. No other proof-of-existence for monotone expanders is known.
引用
收藏
页码:1 / 41
页数:40
相关论文
共 50 条