Sign changes of π (x,q,1) - π(x,q,a)

被引:0
|
作者
J.C. Schlage-Puchta
机构
[1] Mathematisches Institut,
来源
Acta Mathematica Hungarica | 2004年 / 102卷
关键词
comparative prime number theory; Shanks--Rényi-race problem;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that under the assumption of the generalized Riemann hypothesis the function π(x,q,1) - π(x,q,a) has infinitely many sign changes. In this article we give an upper bound for the least such sign change. Similarly, assuming the Riemann hypothesis we give a lower bound for the number of sign changes of π(x)-li x. The implied results for the least sign change are weaker than those obtained by numerical methods, however, our method makes no use of computations of zeros of the ζ-function.
引用
收藏
页码:305 / 320
页数:15
相关论文
共 50 条
  • [1] Sign changes in πq,a(x)-πq,b(x)
    Ford, K
    Hudson, RH
    ACTA ARITHMETICA, 2001, 100 (04) : 297 - 314
  • [2] Sign changes of π(χ,q,1)-π(χ,q,a)
    Schlage-Puchta, JC
    ACTA MATHEMATICA HUNGARICA, 2004, 102 (04) : 305 - 320
  • [3] A study of (x(q + 1), x; 2, q)-minihypers
    Ivan Landjev
    Leo Storme
    Designs, Codes and Cryptography, 2010, 54 : 135 - 147
  • [4] A study of (x(q+1), x; 2, q)-minihypers
    Landjev, Ivan
    Storme, Leo
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (02) : 135 - 147
  • [5] Perturbation estimates for the nonlinear matrix equation X-A * X q A=Q (0<q<1)
    Jia G.
    Gao D.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 295 - 304
  • [7] Sign changes of Δ(1) (x)
    Liu, Dan
    Sui, Yankun
    JOURNAL OF NUMBER THEORY, 2022, 235 : 401 - 419
  • [8] On the nonlinear matrix equation X plus A*X-qA=Q(q ≥ 1)
    Duan, Xuefeng
    Liao, Anping
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (5-6) : 936 - 945
  • [9] On q-congruences related to Hn(x; q) and Mn (x; q)
    Koparal, Sibel
    Omur, Nese
    Elkhiri, Laid
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [10] ON THE SIGN CHANGES OF ψ (x) - x
    Grzeskowiak, Maciej
    Kaczorowski, Jerzy
    Pankowski, Lukasz
    Radziejewski, Maciej
    MATHEMATICS OF COMPUTATION, 2025,