Maximally causal quantum mechanics

被引:0
|
作者
S. M. Roy
机构
[1] Tata Institute of Fundamental Research,
来源
Pramana | 1998年 / 51卷
关键词
Causal quantum mechanics; de Broglie-Bohm quantum mechanics; hidden variable theory; quantum mechanics without observers; 03.65;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics
引用
收藏
页码:597 / 602
页数:5
相关论文
共 50 条
  • [1] Maximally causal quantum mechanics
    Roy, SM
    PRAMANA-JOURNAL OF PHYSICS, 1998, 51 (05): : 597 - 602
  • [2] Maximally realistic causal quantum mechanics
    Roy, SM
    Singh, V
    PHYSICS LETTERS A, 1999, 255 (4-6) : 201 - 208
  • [3] Principles of maximally classical and maximally realistic quantum mechanics
    S M Roy
    Pramana, 2002, 59 : 337 - 343
  • [4] Principles of maximally classical and maximally realistic quantum mechanics
    Roy, SM
    PRAMANA-JOURNAL OF PHYSICS, 2002, 59 (02): : 337 - 343
  • [5] Causal quantum mechanics
    Singh, V
    PRAMANA-JOURNAL OF PHYSICS, 1997, 49 (01): : 5 - 16
  • [6] Causal quantum mechanics
    Virendra Singh
    Pramana, 1997, 49 : 5 - 16
  • [7] About maximally localized states in quantum mechanics
    Detournay, S
    Gabriel, C
    Spindel, P
    PHYSICAL REVIEW D, 2002, 66 (12):
  • [8] THE CAUSAL INTERPRETATION OF QUANTUM MECHANICS
    EPSTEIN, ST
    PHYSICAL REVIEW, 1953, 91 (04): : 985 - 985
  • [9] THE CAUSAL INTERPRETATION OF QUANTUM MECHANICS
    EPSTEIN, ST
    PHYSICAL REVIEW, 1953, 89 (01): : 319 - 319
  • [10] Events in quantum mechanics are maximally non-absolute
    Moreno, George
    Nery, Ranieri
    Duarte, Cristhiano
    Chaves, Rafael
    QUANTUM, 2022, 6