Chaotic-Based Mountain Gazelle Optimizer for Solving Optimization Problems

被引:9
|
作者
Sarangi, Priteesha [1 ]
Mohapatra, Prabhujit [1 ]
机构
[1] Vellore Inst Technol, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
Meta-heuristics; Optimization; Chaotic maps; Engineering problems; LEARNING-BASED OPTIMIZATION; GLOBAL OPTIMIZATION; ALGORITHM; DESIGN; EVOLUTION;
D O I
10.1007/s44196-024-00444-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Mountain Gazelle Optimizer (MGO) algorithm has become one of the most prominent swarm-inspired meta-heuristic algorithms because of its outstanding rapid convergence and excellent accuracy. However, the MGO still faces premature convergence, making it challenging to leave the local optima if early-best solutions neglect the relevant search domain. Therefore, in this study, a newly developed Chaotic-based Mountain Gazelle Optimizer (CMGO) is proposed with numerous chaotic maps to overcome the above-mentioned flaws. Moreover, the ten distinct chaotic maps were simultaneously incorporated into MGO to determine the optimal values and enhance the exploitation of the most promising solutions. The performance of CMGO has been evaluated using CEC2005 and CEC2019 benchmark functions, along with four engineering problems. Statistical tests like the t-test and Wilcoxon rank-sum test provide further evidence that the proposed CMGO outperforms the existing eminent algorithms. Hence, the experimental outcomes demonstrate that the CMGO produces successful and auspicious results.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Chaotic-based grey wolf optimizer for numerical and engineering optimization problems
    Chao Lu
    Liang Gao
    Xinyu Li
    Chengyu Hu
    Xuesong Yan
    Wenyin Gong
    Memetic Computing, 2020, 12 : 371 - 398
  • [2] Chaotic-based grey wolf optimizer for numerical and engineering optimization problems
    Lu, Chao
    Gao, Liang
    Li, Xinyu
    Hu, Chengyu
    Yan, Xuesong
    Gong, Wenyin
    MEMETIC COMPUTING, 2020, 12 (04) : 371 - 398
  • [3] Evolved opposition-based Mountain Gazelle Optimizer to solve optimization problems
    Sarangi, Priteesha
    Mohapatra, Prabhujit
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (10)
  • [4] Chaotic gradient based optimizer for solving multidimensional unconstrained and constrained optimization problems
    Turgut, Oguz Emrah
    Turgut, Mert Sinan
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (03) : 1967 - 2028
  • [5] An improved mountain gazelle optimizer based on chaotic map and spiral disturbance for medical feature selection
    Li, Ying
    Geng, Yanyu
    Sheng, Huankun
    PLOS ONE, 2024, 19 (07):
  • [6] Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Khodadadi, Nima
    Mirjalili, Seyedali
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 174
  • [7] Improved mountain gazelle optimizer based interactive distributed strategy to solving large scale OPF
    Mahdad, Belkacem
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [8] A new enhanced mountain gazelle optimizer and artificial neural network for global optimization of mechanical design problems
    Mehta, Pranav
    Sait, Sadiq M.
    Yildiz, Betul Sultan
    Erdas, Mehmet Umut
    Kopar, Mehmet
    Yildiz, Ali Riza
    MATERIALS TESTING, 2024, 66 (04) : 544 - 552
  • [9] An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems
    Dhawale, Dinesh
    Kamboj, Vikram Kumar
    Anand, Priyanka
    ENGINEERING WITH COMPUTERS, 2023, 39 (02) : 1183 - 1228
  • [10] An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems
    Dinesh Dhawale
    Vikram Kumar Kamboj
    Priyanka Anand
    Engineering with Computers, 2023, 39 : 1183 - 1228