On the stack of semistable G-bundles over an elliptic curve

被引:0
|
作者
Dragos Fratila
机构
[1] Max Planck Institut für Mathematik,
来源
Mathematische Annalen | 2016年 / 365卷
关键词
14; 22; 20;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper Ben-Zvi and Nadler proved that the induction map from B-bundles of degree 0 to semistable G-bundles of degree 0 over an elliptic curve is a small map with Galois group isomorphic to the Weyl group of G. We generalize their result to all connected components of BunG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Bun}}_G$$\end{document} for an arbitrary reductive group G. We prove that for every degree (i.e. topological type) there exists a unique parabolic subgroup such that any semistable G-bundle of this degree has a reduction to it and moreover the induction map is small with Galois group the relative Weyl group of the Levi. This provides new examples of simple automorphic sheaves which are constituents of Eisenstein sheaves for the trivial local system.
引用
收藏
页码:401 / 421
页数:20
相关论文
共 50 条