On the Gosper’s q-constant Πq

被引:0
|
作者
Mohamed El Bachraoui
机构
[1] UAE University,Department Mathematical Sciences
关键词
-trigonometric functions; elliptic functions; theta function identities; 33E05; 11F11; 11F12;
D O I
暂无
中图分类号
学科分类号
摘要
Gosper introduced the functions sinqz and cosqz as q-analogues for the trigonometric functions sin z and cos z respectively. He stated a variety of identities involving these two q-trigonometric functions along with certain constants denoted by Πqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi _{{q^n}}}$$\end{document} (n ∈ N). Gosper noticed that all his formulas on these constants have more than two of the Πqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi _{{q^n}}}$$\end{document}. So, it is natural to raise the question of establishing identities involving only two of the Πqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi _{{q^n}}}$$\end{document}. In this paper, our main goal is to give examples of such formulas in only two Πqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi _{{q^n}}}$$\end{document}.
引用
收藏
页码:1755 / 1764
页数:9
相关论文
共 50 条