-trigonometric functions;
elliptic functions;
theta function identities;
33E05;
11F11;
11F12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Gosper introduced the functions sinqz and cosqz as q-analogues for the trigonometric functions sin z and cos z respectively. He stated a variety of identities involving these two q-trigonometric functions along with certain constants denoted by Πqn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Pi _{{q^n}}}$$\end{document} (n ∈ N). Gosper noticed that all his formulas on these constants have more than two of the Πqn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Pi _{{q^n}}}$$\end{document}. So, it is natural to raise the question of establishing identities involving only two of the Πqn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Pi _{{q^n}}}$$\end{document}. In this paper, our main goal is to give examples of such formulas in only two Πqn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Pi _{{q^n}}}$$\end{document}.