Asymptotic Upper Bounds for Ramsey Functions

被引:0
|
作者
Yusheng Li
Cecil C. Rousseau
Wenan Zang
机构
[1]  Department of Mathematics and Physics,
[2] Hehai University,undefined
[3] Nanjing,undefined
[4] Jiangsu 210098,undefined
[5] P. R. China,undefined
[6]  Department of Mathematical Sciences,undefined
[7] The University of Memphis,undefined
[8] Memphis,undefined
[9] TN 38152,undefined
[10] USA,undefined
[11]  Department of Mathematics,undefined
[12] The University of Hong Kong,undefined
[13] Hong Kong,undefined
[14] P. R. China e-mail: wzang@maths.hku.hk,undefined
来源
Graphs and Combinatorics | 2001年 / 17卷
关键词
Key words. Ramsey number; Independence number; Average degree; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
 We show that for any graph G with N vertices and average degree d, if the average degree of any neighborhood induced subgraph is at most a, then the independence number of G is at least Nfa+1(d), where fa+1(d)=∫01(((1−t)1/(a+1))/(a+1+(d−a−1)t))dt. Based on this result, we prove that for any fixed k and l, there holds r(Kk+l,Kn)≤ (l+o(1))nk/(logn)k−1. In particular, r(Kk, Kn)≤(1+o(1))nk−1/(log n)k−2.
引用
收藏
页码:123 / 128
页数:5
相关论文
共 50 条
  • [1] Asymptotic upper bounds for Ramsey functions
    Li, YS
    Rousseau, CC
    Zang, WN
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 123 - 128
  • [2] ASYMPTOTIC LOWER BOUNDS FOR RAMSEY FUNCTIONS
    SPENCER, J
    DISCRETE MATHEMATICS, 1977, 20 (01) : 69 - 76
  • [3] Upper bounds for Ramsey numbers
    Shi, LS
    DISCRETE MATHEMATICS, 2003, 270 (1-3) : 251 - 265
  • [4] New upper bounds for Ramsey numbers
    Ru, HY
    Min, ZK
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 391 - 394
  • [5] ASYMPTOTIC BOUNDS FOR IRREDUNDANT AND MIXED RAMSEY NUMBERS
    CHEN, G
    HATTINGH, JH
    ROUSSEAU, CC
    JOURNAL OF GRAPH THEORY, 1993, 17 (02) : 193 - 206
  • [6] Asymptotic upper bounds for K1,m,k: complete graph Ramsey Numbers
    Song, Hongxue
    ARS COMBINATORIA, 2013, 111 : 137 - 144
  • [7] LOWER BOUNDS ON GEOMETRIC RAMSEY FUNCTIONS
    Elias, Marek
    Matousek, Jiri
    Roldan-Pensado, Edgardo
    Safernova, Zuzana
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1960 - 1970
  • [8] New upper bounds for Ramsey numbers of books
    Chen, Xun
    Lin, Qizhong
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 115
  • [9] New upper and lower bounds for Ramsey numbers
    Ru, HY
    Sheng, YJ
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (01) : 101 - 105
  • [10] New upper bounds for a canonical Ramsey problem
    Jiang, T
    Mubayi, D
    COMBINATORICA, 2000, 20 (01) : 141 - 146