Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA

被引:0
|
作者
David P. Turner
David R. Conklin
John P. Bolte
机构
[1] Oregon State University,Forest Ecosystems and Society, College of Forestry
[2] Common Futures LLC,Biological and Ecological Engineering
[3] Oregon State University,undefined
来源
Climatic Change | 2015年 / 133卷
关键词
Public Land; Harvest Rate; Dynamic Global Vegetation Model; Vegetation Cover Type; Fine Fuel Moisture Code;
D O I
暂无
中图分类号
学科分类号
摘要
Upland forests in the Pacific Northwest currently provide a host of ecosystem services. However, the regional climate is expected to warm significantly over the course of the 21st century and this factor must be accounted for in planning efforts to maintain those services. Here we couple a dynamic global vegetation model (MC2) with a landscape simulation model (Envision) to evaluate potential impacts of climate change on the vegetation cover and the disturbance regime in the Willamette River Basin, Oregon. Three CMIP5 climate model scenarios, downscaled to a 4 km spatial resolution, were employed. In our simulations, the dominant potential vegetation cover type remained forest throughout the basin, but forest type transitioned from primarily evergreen needleleaf to a mixture of broadleaf and needleleaf growth forms adapted to a warmer climate. By 2100, there was a difference (i.e., climate/vegetation disequilibrium) between potential and actual forest type for 20–50 % of the forested area. In the moderate to high climate change scenarios, the average area burned per year increased three to nine fold from the present day. Forest harvest on private land is projected to be affected late in the century because of fire altering the availability of rotation-age stands. A generally more disturbed and open forest landscape is expected, which may significantly alter the hydrologic cycle.
引用
收藏
页码:335 / 348
页数:13
相关论文
共 50 条
  • [1] Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA
    Turner, David P.
    Conklin, David R.
    Bolte, John P.
    CLIMATIC CHANGE, 2015, 133 (02) : 335 - 348
  • [2] Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin
    Pervez, Md Shahriar
    Henebry, Geoffrey M.
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2015, 3 : 285 - 311
  • [3] Climate change impacts on spatial patterns in drought risk in the Willamette River Basin, Oregon, USA
    Il Won Jung
    Heejun Chang
    Theoretical and Applied Climatology, 2012, 108 : 355 - 371
  • [4] Climate change impacts on spatial patterns in drought risk in the Willamette River Basin, Oregon, USA
    Jung, Il Won
    Chang, Heejun
    THEORETICAL AND APPLIED CLIMATOLOGY, 2012, 108 (3-4) : 355 - 371
  • [5] Hydrological response to climate and land use and land cover change in the Teesta River basin
    Rahman, Syadur
    Islam, A. K. M. Saiful
    HYDROLOGY RESEARCH, 2024, 55 (11): : 1123 - 1142
  • [6] Isolating the Impacts of Land Use/Cover Change and Climate Change on the GPP in the Heihe River Basin of China
    You, Nanshan
    Meng, Jijun
    Zhu, Lijun
    Jiang, Song
    Zhu, Likai
    Li, Feng
    Kuo, Li-Jen
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (10)
  • [7] Quantifying the impacts of climate change and land use/cover change on runoff in the lower Connecticut River Basin
    Wang, Hui
    Stephenson, Scott R.
    HYDROLOGICAL PROCESSES, 2018, 32 (09) : 1301 - 1312
  • [8] Land use/land cover change and its impacts on climate
    Mahmood, Rezaul
    Pielke, Roger A., Sr.
    Hubbard, Kenneth G.
    GLOBAL AND PLANETARY CHANGE, 2006, 54 (1-2) : VII - VII
  • [9] Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon
    EWANE Basil Ewane
    Heon Ho LEE
    Journal of Mountain Science, 2020, 17 (01) : 50 - 67
  • [10] Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin
    Li, Wei
    Li, Lu
    Chen, Jie
    Lin, Qian
    Chen, Hua
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (08) : 4531 - 4548