Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes

被引:0
|
作者
Márcio M. Cunha
E. A. Fonseca
M. G. M. Moreno
Fernando Parisio
机构
[1] Universidade Federal de Pernambuco,Departamento de Física
来源
关键词
Teleportation; Entanglement; Noise;
D O I
暂无
中图分类号
学科分类号
摘要
Channels composed by Einstein–Podolsky–Rosen (EPR) pairs are capable of teleporting arbitrary multipartite states. The question arises whether EPR channels are also optimal against imperfections. In particular, the teleportation of Greenberger–Horne–Zeilinger states (GHZ) requires three EPR states as the channel and full measurements in the Bell basis. We show that, by using two GHZ states as the channel, it is possible to transport any unknown three-qubit state of the form c0|000⟩+c1|111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0|000\rangle +c_1|111\rangle $$\end{document}. The teleportation is made through measurements in the GHZ basis, and, to obtain deterministic results, in most of the investigated scenarios, four out of the eight elements of the basis need to be unambiguously distinguished. Most importantly, we show that when both systematic errors and noise are considered, the fidelity of the teleportation protocol is higher when a GHZ channel is used in comparison with that of a channel composed by EPR pairs.
引用
收藏
相关论文
共 25 条
  • [1] Non-ideal teleportation of tripartite entanglement: Einstein-Podolsky-Rosen versus Greenberger-Horne-Zeilinger schemes
    Cunha, Marcio M.
    Fonseca, E. A.
    Moreno, M. G. M.
    Parisio, Fernando
    QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
  • [2] Probabilistic Controlled Teleportation of a Triplet W State with Combined Channel of Non-Maximally Entangled Einstein-Podolsky-Rosen and Greenberger-Horne-Zeilinger States
    Dong Jian
    Teng Jian-Fu
    CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [3] Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States
    Ghose, S.
    Sinclair, N.
    Debnath, S.
    Rungta, P.
    Stock, R.
    PHYSICAL REVIEW LETTERS, 2009, 102 (25)
  • [4] Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states
    Lu, Huai-Xin
    Zhao, Jia-Qiang
    Wang, Xiao-Qin
    Cao, Lian-Zhen
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [5] Einstein, Podolsky, and Rosen correlations, quantum teleportation, entanglement swapping, and special relativity
    Ryff, Luiz Carlos
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (06): : 5083 - 5086
  • [6] Einstein, Podolsky, and Rosen correlations, quantum teleportation, entanglement swapping, and special relativity
    Ryff, LC
    PHYSICAL REVIEW A, 1999, 60 (06): : 5083 - 5086
  • [7] Greenberger-Horne-Zeilinger versus W states:: Quantum teleportation through noisy channels
    Jung, Eylee
    Hwang, Mi-Ra
    Ju, You Hwan
    Kim, Min-Soo
    Yoo, Sahng-Kyoon
    Kim, Hungsoo
    Park, DaeKil
    Son, Jin-Woo
    Tamaryan, S.
    Cha, Seong-Keuck
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [8] Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks
    Armstrong, Seiji
    Wang, Meng
    Teh, Run Yan
    Gong, Qihuang
    He, Qiongyi
    Janousele, Jiri
    Bachor, Hans-Albert
    Reid, Margaret D.
    Lam, Ping Koy
    NATURE PHYSICS, 2015, 11 (02) : 167 - 172
  • [9] Three-tangle does not properly quantify tripartite entanglement for Greenberger-Horne-Zeilinger-type states
    Jung, Eylee
    Park, DaeKil
    Son, Jin-Woo
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [10] Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger-Horne-Zeilinger states
    Zhao, Jia-Qiang
    Cao, Lian-Zhen
    Wang, Xiao-Qin
    Lu, Huai-Xin
    PHYSICS LETTERS A, 2012, 376 (35) : 2377 - 2380