Congruences for [j, 2j]-cubic partitions

被引:0
|
作者
M. S. Mahadeva Naika
T. Harishkumar
机构
[1] Bengaluru City University,Department of Mathematics
来源
The Journal of Analysis | 2022年 / 30卷
关键词
Congruences; Cubic partitions; [;  2; ]-cubic partitions; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Let aj,2j(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{j, 2j}(n)$$\end{document} denote the number of [j, 2j]-cubic partitions of n in which none of the parts congruent to j modulo 2j. In this paper, we have establish many infinite families of congruences modulo 3 for a3,6(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{3, 6}(n)$$\end{document}, congruences modulo powers of 2 for a5,10(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{5, 10}(n)$$\end{document} and congruences modulo powers of 2 and 3 for a9,18(n).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{9, 18}(n).$$\end{document} For example, for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 0$$\end{document} and β,γ≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \gamma \ge 0,$$\end{document}a9,18162·54β·72γ+1(7n+j)+27·54β·72γ+2+12≡0(mod27),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {a}_{9, 18}\left(162\cdot 5^{4\beta }\cdot 7^{2\gamma +1}(7n+j)+\dfrac{27\cdot 5^{4\beta }\cdot 7^{2\gamma +2}+1}{2}\right) \equiv 0 \pmod {27}, \end{aligned}$$\end{document}where j=1,2,3,4,5,6.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1, 2, 3, 4, 5, 6.$$\end{document}
引用
收藏
页码:221 / 244
页数:23
相关论文
共 50 条
  • [1] Congruences for [j, 2j]-cubic partitions
    Naika, M. S. Mahadeva
    Harishkumar, T.
    JOURNAL OF ANALYSIS, 2022, 30 (01): : 221 - 244
  • [2] Congruences for 3-core cubic partitions
    Robson da Silva
    James A. Sellers
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 404 - 420
  • [3] Congruences for 3-core cubic partitions
    da Silva, Robson
    Sellers, James A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 404 - 420
  • [4] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04): : 1038 - 1054
  • [5] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    M. S. Mahadeva Naika
    T. Harishkumar
    T. N. Veeranayaka
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1038 - 1054
  • [6] Age-related failure of muscle regeneration in the dystrophic dy(2J)/dy(2J) mouse
    di Schiaffino, Stefano
    Gorza, Luisa
    Parry, David
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 1993, 4 (03) : 269 - 277
  • [7] 槡ri2jΣ槡ri珋2j
    θj
    南宁师范大学学报(自然科学版), 2021, (01) : 62 - 67
  • [8] Interactions of a j = 1 Boson in the 2(2j + 1) Component Theory
    Dvoeglazov, V. V.
    International Journal of Theoretical Physics, 35 (01):
  • [10] Glomus cells of DBA/2J mouse
    Yamaguchi, S
    Higashi, T
    Balbir, A
    Hirasawa, S
    Lande, B
    Shirahata, M
    FASEB JOURNAL, 2002, 16 (05): : A814 - A814