Geometric construction of association schemes from non-degenerate quadrics

被引:0
|
作者
Wang Kaishun
Wei Hongzeng
机构
[1] the Chinese Academy of Sciences,Institute of Systems Science, the Academy of Mathematics and Systems Sciences
[2] Peking University,Department of Mathematics
[3] Hebei Normal University,Department of Mathematics
关键词
Association schemes; quadrics; projective spaces;
D O I
10.1007/BF02671130
中图分类号
学科分类号
摘要
LetFq be a finite field withq elements, whereq is a power of an odd prime. In this paper, we assume that δ=0,1 or 2 and consider a projective spacePG(2ν+δ,Fq), partitioned into an affine spaceAG(2ν+δ,Fq) of dimension 2ν+δ and a hyperplaneℋ=PG(2ν+δ−1,Fq) of dimension 2ν+δ−1 at infinity. The points of the hyperplaneℋ are next partitioned into three subsets. A pair of pointsa andb of the affine space is defined to belong to classi if the line\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {ab} $$ \end{document} meets the subseti of ℋ. Finally, we derive a family of three-class association schemes, and compute their parameters.
引用
收藏
页码:405 / 413
页数:8
相关论文
共 50 条