Global Spectrum Fluctuations for Gaussian Beta Ensembles: A Martingale Approach

被引:0
|
作者
Khanh Duy Trinh
机构
[1] Kyushu University,Institute of Mathematics for Industry
来源
关键词
Gaussian beta ensembles; Tridiagonal random matrices; Semicircle law; Martingale difference central limit theorem; Primary 60B20; Secondary 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
The paper describes the global limiting behavior of Gaussian beta ensembles where the parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is allowed to vary with the matrix size n. In particular, we show that as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document} with nβ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\beta \rightarrow \infty $$\end{document}, the empirical distribution converges weakly to the semicircle distribution, almost surely. The Gaussian fluctuation around the limit is then derived by a martingale approach.
引用
收藏
页码:1420 / 1437
页数:17
相关论文
共 50 条