Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators

被引:0
|
作者
Jun Cao
Dachun Yang
Sibei Yang
机构
[1] Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences, Beijing Normal University
[2] Ministry of Education,undefined
来源
关键词
Riesz transform; Davies-Gaffney estimate; Schrödinger operator; Second order elliptic operator; Hardy space; Weak Hardy space; 47B06; 42B20; 42B25; 42B30; 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
Let L1 be a nonnegative self-adjoint operator in L2(ℝn) satisfying the Davies-Gaffney estimates and L2 a second order divergence form elliptic operator with complex bounded measurable coefficients. A typical example of L1 is the Schrödinger operator −Δ+V, where Δ is the Laplace operator on ℝn and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le V\in L^{1}_{\mathop{\mathrm{loc}}} ({\mathbb{R}}^{n})$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} be the Hardy space associated to Li for i∈{1, 2}. In this paper, the authors prove that the Riesz transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D (L_{i}^{-1/2})$\end{document} is bounded from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} to the classical weak Hardy space WHp(ℝn) in the critical case that p=n/(n+1). Recall that it is known that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(L_{i}^{-1/2})$\end{document} is bounded from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} to the classical Hardy space Hp(ℝn) when p∈(n/(n+1), 1].
引用
收藏
页码:99 / 114
页数:15
相关论文
共 50 条
  • [1] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Cao, Jun
    Yang, Dachun
    Yang, Sibei
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 99 - 114
  • [2] Boundedness of Generalized Riesz Transforms on Orlicz–Hardy Spaces Associated to Operators
    Jun Cao
    Der-Chen Chang
    Dachun Yang
    Sibei Yang
    Integral Equations and Operator Theory, 2013, 76 : 225 - 283
  • [3] Boundedness of Generalized Riesz Transforms on Orlicz-Hardy Spaces Associated to Operators
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (02) : 225 - 283
  • [4] Riesz transforms associated to Schrodinger operators on weighted Hardy spaces
    Song, Liang
    Yan, Lixin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) : 1466 - 1490
  • [5] Boundedness of second-order Riesz transforms on weighted Hardy and BMO spaces associated with Schrodinger operators
    Nguyen Ngoc Trong
    Le Xuan Truong
    Tan Duc Do
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (06) : 687 - 717
  • [6] BOUNDEDNESS OF SECOND ORDER RIESZ TRANSFORMS ASSOCIATED TO SCHRODINGER OPERATORS ON MUSIELAK-ORLICZ-HARDY SPACES
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (04) : 1435 - 1463
  • [7] The boundedness of Riesz transforms for Hermite expansions on the Hardy spaces
    Huang Jizheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 559 - 571
  • [8] Riesz Transforms Associated with Schrdinger Operators Acting on Weighted Hardy Spaces
    Hua Wang
    Analysis in Theory and Applications, 2015, 31 (02) : 138 - 153
  • [9] Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces
    Maas, Jan
    van Neerven, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (08) : 2410 - 2475
  • [10] Endpoint Estimates of Riesz Transforms Associated with Generalized Schrodinger Operators
    Liu, Yu
    Qi, Shuai
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04): : 787 - 801