Quantum Affine Algebras, Graded Limits and Flags

被引:0
|
作者
Matheus Brito
Vyjayanthi Chari
Deniz Kus
R. Venkatesh
机构
[1] UFPR,Departamento de Matematica
[2] University of California,Department of Mathematics
[3] Riverside,Faculty of Mathematics
[4] University of Bochum,Department of Mathematics
[5] Indian Institute of Science,undefined
来源
Journal of the Indian Institute of Science | 2022年 / 102卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this survey, we review some of the recent connections between the representation theory of (untwisted) quantum affine algebras and the representation theory of current algebras. We mainly focus on the finite-dimensional representations of these algebras. This connection arises via the notion of the graded and classical limit of finite-dimensional representations of quantum affine algebras. We explain how this study has led to interesting connections with Macdonald polynomials and discuss a BGG-type reciprocity result. We also discuss the role of Demazure modules in this theory and several recent results on the presentation, structure and combinatorics of Demazure modules.
引用
收藏
页码:1001 / 1031
页数:30
相关论文
共 50 条
  • [1] Quantum Affine Algebras, Graded Limits and Flags
    Brito, Matheus
    Chari, Vyjayanthi
    Kus, Deniz
    Venkatesh, R.
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2022, 102 (3) : 1001 - 1031
  • [2] Classical limits of quantum toroidal and affine Yangian algebras
    Tsymbaliuk, Alexander
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2633 - 2646
  • [3] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326
  • [4] AFFINE QUANTUM SCHUR ALGEBRAS AND AFFINE HECKE ALGEBRAS
    Fu, Qiang
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 270 (02) : 351 - 366
  • [5] QUANTUM AFFINE ALGEBRAS
    CHARI, V
    PRESSLEY, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) : 261 - 283
  • [6] Graded contractions of affine Lie algebras
    deMontigny, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 4019 - 4034
  • [7] CLUSTER ALGEBRAS AND QUANTUM AFFINE ALGEBRAS
    Hernandez, David
    Leclerc, Bernard
    DUKE MATHEMATICAL JOURNAL, 2010, 154 (02) : 265 - 341
  • [8] On quantum shuffle and quantum affine algebras
    Grosse, P.
    JOURNAL OF ALGEBRA, 2007, 318 (02) : 495 - 519
  • [9] Dirac cohomology for graded affine Hecke algebras
    Barbasch, Dan
    Ciubotaru, Dan
    Trapa, Peter E.
    ACTA MATHEMATICA, 2012, 209 (02) : 197 - 227
  • [10] Quantum affine algebras and Grassmannians
    Chang, Wen
    Duan, Bing
    Fraser, Chris
    Li, Jian-Rong
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 1539 - 1583