A detailed description of the binomial theorem and an application to permutation binomials over finite fields

被引:0
|
作者
Zhilin Zhang
Lang Tang
Ningjing Huang
机构
[1] South China Normal University,School of Mathematical Science
[2] Hunan First Normal University,Mathematics and Computational Science
[3] Liangtian Town Third Primary School,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Binomial theorem; Combinatorial identities; Permutation binomials; Finite fields; 05A05; 11T06; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a detailed description of the binomial theorem and obtain some new classes of combinatorial identities. As an application, we discuss a class of permutation binomials over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}, which is of the form xμ+ν+2xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\mu +\nu }+2x^{\mu }$$\end{document}, where q≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod {3}$$\end{document} and (ν,q-1)=q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu , q-1)=\frac{q-1}{3}$$\end{document}.
引用
收藏
页码:177 / 198
页数:21
相关论文
共 50 条
  • [1] A detailed description of the binomial theorem and an application to permutation binomials over finite fields
    Zhang, Zhilin
    Tang, Lang
    Huang, Ningjing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 177 - 198
  • [2] ON PERMUTATION BINOMIALS OVER FINITE FIELDS
    Ayad, Mohamed
    Belghaba, Kacem
    Kihel, Omar
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 112 - 124
  • [3] PERMUTATION BINOMIALS OVER FINITE FIELDS
    Masuda, Ariane M.
    Zieve, Michael E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) : 4169 - 4180
  • [4] Permutation binomials over finite fields
    Oliveira, Jose Alves
    Brochero Martinez, F. E.
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [5] A class of permutation binomials over finite fields
    Hou, Xiang-dong
    JOURNAL OF NUMBER THEORY, 2013, 133 (10) : 3549 - 3558
  • [6] A survey of permutation binomials and trinomials over finite fields
    Hou, Xiang-dong
    TOPICS IN FINITE FIELDS, 2015, 632 : 177 - +
  • [7] Determination of a type of permutation binomials over finite fields
    Hou, Xiang-Dong
    Lappano, Stephen D.
    JOURNAL OF NUMBER THEORY, 2015, 147 : 14 - 23
  • [8] New classes of permutation binomials and permutation trinomials over finite fields
    Li, Kangquan
    Qu, Longjiang
    Chen, Xi
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 69 - 85
  • [9] Permutation Binomial Functions over Finite Fields
    Miloserdov A.V.
    Journal of Applied and Industrial Mathematics, 2018, 12 (4) : 694 - 705
  • [10] A certain generalized Lucas sequence and its application to the permutation binomials over finite fields
    Zhang, Zhilin
    Li, Hongjian
    Tian, Delu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,