The infrared singularities of gravitational amplitudes are one-loop exact, in that higher-loop divergences are characterized by the exponential of the one-loop divergence. We show that the contributions to SU(N) gauge-theory amplitudes that are mostsubleading in the 1/N expansion are also one-loop exact, provided that the dipole conjecture holds. Possible corrections to the dipole conjecture, beginning at three loops, could violate one-loop-exactness, though would still maintain the absence of collinear divergences. We also demonstrate a relation between L-loop four-point \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \mathcal{N}=8 $\end{document} supergravity and mostsubleading-color \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \mathcal{N}=4 $\end{document} SYM amplitudes that holds for the two leading IR divergences, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \mathcal{O}\left( {{1 \left/ {{{\in^L}}} \right.}} \right) $\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \mathcal{O}\left( {{1 \left/ {{{\in^{L-1 }}}} \right.}} \right) $\end{document}, but breaks down at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \mathcal{O}\left( {{1 \left/ {{{\in^{L-2 }}}} \right.}} \right) $\end{document}.