In this work, we prove the Cauchy–Kowalewski theorem for the initial-value problem ∂w∂t=Lww(0,z)=w0(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \frac{\partial w}{\partial t}= & {} Lw \\ w(0,z)= & {} w_{0}(z) \end{aligned}$$\end{document}where Lw:=E0(t,z)∂∂ϕ¯dEwdz+F0(t,z)∂∂ϕ¯dEwdz¯+C0(t,z)dEwdz+G0(t,z)dEwdz¯+A0(t,z)w+B0(t,z)w¯+D0(t,z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} Lw:= & {} E_{0}(t,z)\frac{\partial }{\partial \overline{\phi }}\left( \frac{ d_{E}w}{dz}\right) +F_{0}(t,z)\overline{\left( \frac{\partial }{\partial \overline{\phi }}\left( \frac{d_{E}w}{dz}\right) \right) }+C_{0}(t,z)\frac{ d_{E}w}{dz} \\&+G_{0}(t,z)\overline{\left( \frac{d_{E}w}{dz}\right) } +A_{0}(t,z)w+B_{0}(t,z)\overline{w}+D_{0}(t,z) \end{aligned}$$\end{document}in the space PDE\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_{D}\left( E\right) $$\end{document} of Pseudo Q-holomorphic functions.