Sub-Hilbert Lattices

被引:0
|
作者
José Luis Castiglioni
Víctor Fernández
Héctor Federico Mallea
Hernán Javier San Martín
机构
[1] CONICET,Departamento de Matemática, Facultad de Ciencias Exactas (UNLP)
[2] Universidad Nacional de San Juan,Instituto de Ciencias Básicas (Área Matemática)
来源
Studia Logica | 2023年 / 111卷
关键词
Hilbert algebras; Subresiduated lattices; Hemi-implicative lattices; Congruences;
D O I
暂无
中图分类号
学科分类号
摘要
A hemi-implicative lattice is an algebra (A,∧,∨,→,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\wedge ,\vee ,\rightarrow ,1)$$\end{document} of type (2, 2, 2, 0) such that (A,∧,∨,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\wedge ,\vee ,1)$$\end{document} is a lattice with top and for every a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in A$$\end{document}, a→a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\rightarrow a = 1$$\end{document} and a∧(a→b)≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\wedge (a\rightarrow b) \le b$$\end{document}. A new variety of hemi-implicative lattices, here named sub-Hilbert lattices, containing both the variety generated by the {∧,∨,→,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\wedge ,\vee ,\rightarrow ,1\}$$\end{document}-reducts of subresiduated lattices and that of Hilbert lattices as proper subvarieties is defined. It is shown that any sub-Hilbert lattice is determined (up to isomorphism) by a triple (L, D, S) which satisfies the following conditions: L is a bounded distributive lattice,D is a sublattice of L containing 0, 1 such that for each a,b∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \in L$$\end{document} there is an element c∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \in D$$\end{document} with the property that for all d∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in D$$\end{document}, a∧d≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \wedge d \le b$$\end{document} if and only if d≤c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \le c$$\end{document} (we write a→Db\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \rightarrow _D b$$\end{document} for the element c), andS is a non void subset of L such that S is closed under →D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow _D$$\end{document} andS, with its inherited order, is itself a lattice. Finally, the congruences of sub-Hilbert lattices are studied.
引用
收藏
页码:431 / 452
页数:21
相关论文
共 50 条
  • [1] Sub-Hilbert Lattices
    Luis Castiglioni, Jose
    Fernandez, Victor
    Federico Mallea, Hector
    Javier San Martin, Hernan
    STUDIA LOGICA, 2023, 111 (03) : 431 - 452
  • [2] Sub-Hilbert spaces in Fock-Sobolev spaces on Cn
    Abkar, Ali
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [3] Sub-Hilbert relation for Fock-Sobolev type spaces
    Eskandari, Setareh
    Abkar, Ali
    Ahag, Per
    Perala, Antti
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 958 - 969
  • [4] Curl condition: Existence of sub-Hilbert space for molecular species or chemical processes
    Sah, Mantu Kumar
    Mukherjee, Soumya
    Naskar, Koushik
    Hazra, Saikat
    Adhikari, Satrajit
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2023, 123 (22)
  • [5] An Aharonov-Anandan phase gate in the sub-Hilbert space of a coupling flux qubits system
    郑国林
    邓辉
    吴玉林
    王新强
    陈莺飞
    郑东宁
    Chinese Physics B, 2012, 21 (07) : 150 - 155
  • [6] An Aharonov-Anandan phase gate in the sub-Hilbert space of a coupling flux qubits system
    Zheng, Guo-Lin
    Deng, Hui
    Wu, Yu-Lin
    Wang, Xin-Qiang
    Chen, Ying-Fei
    Zheng Dong-Ning
    CHINESE PHYSICS B, 2012, 21 (07)
  • [7] ADT: A Generalized Algorithm and Program for Beyond Born-Oppenheimer Equations of "N" Dimensional Sub-Hilbert Space
    Naskar, Koushik
    Mukherjee, Soumya
    Mukherjee, Bijit
    Ravi, Satyam
    Mukherjee, Saikat
    Sardar, Subhankar
    Adhikari, Satrajit
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (03) : 1666 - 1680
  • [8] Index of lattices and Hilbert polynomials
    Aleksentsev, Yu. M.
    MATHEMATICAL NOTES, 2006, 80 (3-4) : 313 - 317
  • [9] HILBERT POLYNOMIALS AND GEOMETRIC LATTICES
    ROSE, LL
    TERAO, H
    ADVANCES IN MATHEMATICS, 1990, 84 (02) : 209 - 225
  • [10] Equations holding in Hilbert lattices
    Mayet, Rene
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (07) : 1257 - 1287