Numerical study of design parameters influencing anchored diaphragm walls for deep excavation

被引:0
|
作者
Rafi’ M. Sulaiman Al-Ne’aimi
Hind K. Nasir
机构
[1] University of Duhok,Department of Civil Engineering
来源
关键词
Constitutive model; Deep excavation; Diaphragm walls; Ground anchors; Heave;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Plaxis 2D v20 code, this paper presents numerical modeling of a large and deep excavation in layered soil supported by anchored diaphragm walls under unequal load to investigate the influence of several design parameters on the stability and safety of the supporting system, as well as their impacts on the nearby structures. The numerical model's results were compared to those of a case study of braced excavation in clays, and a close agreement was found. The soil profile is made up of multiple clay layers that are represented by the hardening soil model with a small strain (HSsmall). The diaphragm walls are represented as plates, while the anchor rods are represented as node-to-node connections. The studied parameters include the inclination angle of anchors, number of ground anchors, groundwater level, diaphragm wall thickness, surface load distance from the excavation edges, and various wall-embedded depths to the excavation depth ratios. The analysis's results were examined and discussed in terms of maximum lateral and vertical displacements, bending moments in the wall supporting system, vertical displacement of the ground surface behind both sides of the excavation, and the heave developed at the bottom of the excavation. The analysis's results show that as Db/Dex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{b} /D_{{{\text{ex}}}}$$\end{document} increased from 0.3 to 0.5, uxw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{xw}$$\end{document} and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} are reduced by about 10.5 and 8.1%. However, when it increased more to 0.7, their values remained unchanged. Furthermore, twall\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{{{\text{wall}}}}$$\end{document} within the range of (0.8–1.0) m corresponds to twall/Dex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{{{\text{wall}}}} /D_{{{\text{ex}}}}$$\end{document} = 0.04–0.05, and Db/Dex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{b} /D_{{{\text{ex}}}}$$\end{document} = 0.7 can be used as a non-dimensional design parameter that satisfies all design factors for deep excavation design and similar geotechnical problems.
引用
收藏
相关论文
共 50 条
  • [1] Numerical study of design parameters influencing anchored diaphragm walls for deep excavation
    Al-Ne'aimi, Rafi'M. Sulaiman
    Nasir, Hind K.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (11)
  • [2] DESIGN OF ANCHORED DIAPHRAGM WALL FOR DEEP EXCAVATION
    Zhussupbekov, Askar
    Omarov, Abdulla
    Tanyrbergenova, Gulzhanat
    INTERNATIONAL JOURNAL OF GEOMATE, 2019, 16 (58): : 139 - 144
  • [3] Numerical analysis of 20.5 m deep excavation with anchored diaphragm wall
    Josifovski, J.
    Gjorgjevski, S.
    Jovanovski, M.
    GEOTECHNICAL ASPECTS OF UNDERGROUND CONSTRUCTION IN SOFT GROUND, 7TH INTERNATIONAL SYMPOSIUM, 2012, : 835 - 841
  • [4] A numerical study on the influence of anchorage failure for a deep excavation retained by anchored pile walls
    Zhao, Wen
    Han, Jian-Yong
    Chen, Yang
    Jia, Peng-Jiao
    Li, Shen-Gang
    Li, Yi
    Zhao, Zhen
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (02):
  • [5] Monitoring of a Deep Excavation Supported by Anchored Retaining Walls
    Mengüç Ünver
    İnci Süt Ünver
    Indian Geotechnical Journal, 2022, 52 : 227 - 236
  • [6] A numerical analysis of anchored diaphragm walls for a deep basement in Kuala Lumpur, Malaysia.
    Tan, YC
    Liew, SS
    Gue, SS
    Taha, MR
    GEOTECHNICAL ENGINEERING MEETING SOCIETY'S NEEDS, VOLS 1 AND 2, PROCEEDINGS, 2001, : 453 - 458
  • [7] Monitoring of a Deep Excavation Supported by Anchored Retaining Walls
    Unver, Menguc
    Unver, Inci Sut
    INDIAN GEOTECHNICAL JOURNAL, 2022, 52 (01) : 227 - 236
  • [8] A numerical study on ground displacement and stress during and after the installation of deep circular diaphragm walls and soil excavation
    Arai, Yasushi
    Kusakabe, Osamu
    Murata, Osamu
    Konishi, Shinji
    COMPUTERS AND GEOTECHNICS, 2008, 35 (05) : 791 - 807
  • [9] Performance of Diaphragm Walls in Soft Clay of a Deep Basement Excavation
    Cheng, K.
    Xu, R-Q
    Ying, H-W
    Gan, X-L
    Zhang, L-S
    SOIL MECHANICS AND FOUNDATION ENGINEERING, 2022, 59 (02) : 159 - 166
  • [10] Reliability analysis of deflection of diaphragm walls caused by deep excavation
    Tang, Yu-Geng
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2010, 32 (SUPPL. 2): : 179 - 182