Submodules of the Hardy module over the polydisc

被引:0
|
作者
Jaydeb Sarkar
机构
[1] Statistics and Mathematics Unit,Indian Statistical Institute
来源
关键词
Hilbert Space; Invariant Subspace; Closed Subspace; Blaschke Product; Jordan Block;
D O I
暂无
中图分类号
学科分类号
摘要
We say that a submodule S of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2}({D^n})$$\end{document} (n > 1) is co-doubly commuting if the quotient module \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2}({D^n})/S$$\end{document} is doubly commuting. We show that a co-doubly commuting submodule of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2}({D^n})$$\end{document} is essentially doubly commuting if and only if the corresponding one-variable inner functions are finite Blaschke products or n = 2. In particular, a co-doubly commuting submodule S of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2}({D^n})$$\end{document} is essentially doubly commuting if and only if n = 2 or that S is of finite co-dimension. We obtain an explicit representation of the Beurling-Lax-Halmos inner functions for those submodules of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{H^2 (\mathbb{D}^{n - 1} )}^2 (\mathbb{D})$\end{document} which are co-doubly commuting submodules of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2}({D^n})$$\end{document}. Finally, we prove that a pair of co-doubly commuting submodules of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2}({D^n})$$\end{document} are unitarily equivalent if and only if they are equal.
引用
收藏
页码:317 / 336
页数:19
相关论文
共 50 条