Hilbert Space;
Invariant Subspace;
Closed Subspace;
Blaschke Product;
Jordan Block;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We say that a submodule S of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H^2}({D^n})$$\end{document} (n > 1) is co-doubly commuting if the quotient module \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H^2}({D^n})/S$$\end{document} is doubly commuting. We show that a co-doubly commuting submodule of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H^2}({D^n})$$\end{document} is essentially doubly commuting if and only if the corresponding one-variable inner functions are finite Blaschke products or n = 2. In particular, a co-doubly commuting submodule S of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H^2}({D^n})$$\end{document} is essentially doubly commuting if and only if n = 2 or that S is of finite co-dimension. We obtain an explicit representation of the Beurling-Lax-Halmos inner functions for those submodules of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{H^2 (\mathbb{D}^{n - 1} )}^2 (\mathbb{D})$\end{document} which are co-doubly commuting submodules of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H^2}({D^n})$$\end{document}. Finally, we prove that a pair of co-doubly commuting submodules of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H^2}({D^n})$$\end{document} are unitarily equivalent if and only if they are equal.