Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction

被引:0
|
作者
Xun Cui
Likun Gao
Cheng-Hsin Lu
Rui Ma
Yingkui Yang
Zhiqun Lin
机构
[1] China University of Geosciences,Engineering Research Center of Nano
[2] National University of Singapore,Geomaterials of Ministry of Education, Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, Faculty of Materials Science and Chemistry
[3] Northeast Forestry University,Department of Chemical and Biomolecular Engineering
[4] South-Central Minzu University,Key Laboratory of Bio
[5] National Tsing Hua University,based Material Science and Technology of Ministry of Education
来源
关键词
Single-metal-atom catalyst; Electrocatalysis; Coordination structure; Oxygen reduction reaction;
D O I
暂无
中图分类号
学科分类号
摘要
Single-metal-atom catalysts (SMACs) have garnered extensive attention for various electrocatalytic applications, owing to their maximum atom-utilization efficiency, tunable electronic structure, and remarkable catalytic performance. In particular, carbon-based SMACs exhibit optimal electrocatalytic activity for the oxygen reduction reaction (ORR) which is of paramount importance for several sustainable energy conversion and generation technologies, such as fuel cells and metal-air batteries. Despite continuous endeavors in developing various advanced carbon-based SMACs for electrocatalytic ORR, the rational regulation of coordination structure and thus the electronic structure of carbon-based SMACs remains challenging. In this review, we critically examine the role of coordination structure, including local coordination structure (i.e., metal atomic centers and the first coordination shell) and extended local coordination structure (i.e., the second and higher coordination shells), on the rational design of carbon-based SMACs for high-efficiency electrocatalytic ORR. Insights into the relevance between coordination structures and their intrinsic ORR activities are emphatically exemplified and discussed. Finally, we also propose the major challenges and future perspectives in the rational design of advanced carbon-based SMACs for electrocatalytic ORR. This review aims to emphasize the significance of coordination structure and deepen the insightful understanding of structure-performance relationships.
引用
收藏
相关论文
共 50 条
  • [1] Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction
    Cui, Xun
    Gao, Likun
    Lu, Cheng-Hsin
    Ma, Rui
    Yang, Yingkui
    Lin, Zhiqun
    NANO CONVERGENCE, 2022, 9 (01)
  • [2] Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction
    Wang, Yong
    Hu, Fei-Long
    Mi, Yan
    Yan, Cheng
    Zhao, Shenlong
    CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [3] Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction
    Wang, Yong
    Hu, Fei-Long
    Mi, Yan
    Yan, Cheng
    Zhao, Shenlong
    Chemical Engineering Journal, 2021, 406
  • [4] Carbon-based single-atom catalysts: impacts of atomic coordination on the oxygen reduction reaction
    Kang, Zhiwen
    Wang, Xiaochen
    Wang, Dan
    Bai, Bing
    Zhao, Yafei
    Xiang, Xu
    Zhang, Bing
    Shang, Huishan
    NANOSCALE, 2023, 15 (22) : 9605 - 9634
  • [5] Principles of coordination structure design of single-atom catalysts in electrocatalytic oxygen reduction reaction
    Zhao, Shi-Hang
    Pan, Yuan
    RARE METALS, 2025, : 2900 - 2920
  • [6] Oxygen reduction reaction on carbon-based catalysts
    Ozkan, Umit
    Singh, Deepika
    Mamtani, Kuldeep
    Tian, Juan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [7] Rational Design of Single-Atom Catalysts for Enhanced Electrocatalytic Nitrogen Reduction Reaction
    Agarwal, Sakshi
    Kumar, Ritesh
    Arya, Rakesh
    Singh, Abhishek K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (23): : 12585 - 12593
  • [8] Fundamentals of Electrochemical CO2 Reduction on Single-Metal-Atom Catalysts
    Nguyen, Tu N.
    Salehi, Mahdi
    Quyet Van Le
    Seifitokaldani, Ali
    Cao Thang Dinh
    ACS CATALYSIS, 2020, 10 (17): : 10068 - 10095
  • [9] Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions
    Li, Yinqi
    Wei, Zihao
    Sun, Zhiyi
    Zhai, Huazhang
    Li, Shenghua
    Chen, Wenxing
    SMALL, 2024, 20 (38)
  • [10] Research Progress of Carbon-supported Metal Single Atom Catalysts for Oxygen Reduction Reaction
    Hao Ce
    Liu Ziruo
    Liu Wei
    Shi Yantao
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (08) : 820 - 834