On the number of terms in the Lovelock products

被引:0
|
作者
Xavier Lachaume
机构
[1] Université de Tours-Université d’Orléans-UMR 7013 du CNRS,Institut Denis Poisson
来源
The European Physical Journal C | 2019年 / 79卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this short note we wonder about the explicit expression of the expanding of the p-th Lovelock product. We use the 1990s’ works of S. A. Fulling et al. on the symmetries of the Riemann tensor, and we show that the number of independent scalars appearing in this expanding is equal to the number of Young diagrams with all row lengths even in the decomposition of the p-th plethysm of the Young diagram representing the symmetries of the Riemann tensor.
引用
收藏
相关论文
共 50 条
  • [1] On the number of terms in the Lovelock products
    Lachaume, Xavier
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (03):
  • [2] Lovelock terms and BRST cohomology
    Cnockaert, S
    Henneaux, M
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (13) : 2797 - 2809
  • [3] Null boundary terms for Lanczos–Lovelock gravity
    Sumanta Chakraborty
    Krishnamohan Parattu
    General Relativity and Gravitation, 2019, 51
  • [4] Lovelock inflation and the number of large dimensions
    Ferrer, Francesc
    Rasanen, Syksy
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11):
  • [5] Conformal/Poincare Coset, cosmology, and descendants of Lovelock terms
    Gabadadze, Gregory
    Tukhashvili, Giorgi
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [6] Correction to: Null boundary terms for Lanczos–Lovelock gravity
    Sumanta Chakraborty
    Krishnamohan Parattu
    General Relativity and Gravitation, 2019, 51
  • [7] Null boundary terms for Lanczos-Lovelock gravity
    Chakraborty, Sumanta
    Parattu, Krishnamohan
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (02)
  • [8] Holographic entanglement entropy of a de Sitter braneworld with Lovelock terms
    Kushihara, Kouki
    Izumi, Keisuke
    Shiromizu, Tetsuya
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (04):
  • [9] NUMBER OF NECESSARY BASIC TERMS IN A SYSTEM OF TERMS
    KRAH, W
    REICHEL, H
    DEUTSCHE ZEITSCHRIFT FUR PHILOSOPHIE, 1968, 16 (10): : 1240 - 1246
  • [10] Bimetric theory and partial masslessness with Lanczos-Lovelock terms in arbitrary dimensions
    Hassan, S. F.
    Schmidt-May, Angnis
    von Strauss, Mikael
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (18)