On higher order Bessel potentials

被引:0
|
作者
A. S. Abdel-Rady
H. Begehr
机构
[1] South Valley University,Math. Department, Faculty of Science
[2] FU Berlin,I. Math. Inst.
来源
Archiv der Mathematik | 2004年 / 82卷
关键词
31B15; 31B30; 35J30.;
D O I
暂无
中图分类号
学科分类号
摘要
The solutions of the equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -(\Delta - I)^{k}u_{k} = f, k \geq 1 $ \end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \mathbb{R}^n $ \end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ f \in L^{2} (\mathbb{R}^n) $ \end{document} are investigated, Bessel potentials of higher order are defined, and recurrence relations between these solutions and these Bessel potentials are obtained. It is also proved that these solutions and the solutions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\Delta^{k}v_{k} + v_{k} = \varrho $ \end{document}, under certain conditions, are identical.
引用
收藏
页码:361 / 370
页数:9
相关论文
共 50 条
  • [1] On higher order Bessel potentials
    Abdel-Rady, AS
    Begehr, H
    ARCHIV DER MATHEMATIK, 2004, 82 (04) : 361 - 370
  • [2] On higher order generalized Bessel potentials
    Abdel-Rady, A. S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (07) : 653 - 667
  • [3] Optical forces in higher order Bessel beam
    Siler, Martin
    Jakl, Petr
    Chvatal, Lukas
    Zemanek, Pavel
    18TH CZECH-POLISH-SLOVAK OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2012, 8697
  • [4] Higher derivatives of the Bessel functions with respect to the order
    Brychkov, Yu. A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (07) : 566 - 577
  • [5] Micromanipulation in higher-order Bessel beams
    R. V. Skidanov
    V. V. Kotlyar
    S. N. Khonina
    A. V. Volkov
    V. A. Soifer
    Optical Memory and Neural Networks, 2007, 16 (2) : 91 - 98
  • [6] Higher order Riesz transforms associated with Bessel operators
    Betancor, Jorge J.
    Farina, Juan C.
    Martinez, Teresa
    Rodriguez-Mesa, Lourdes
    ARKIV FOR MATEMATIK, 2008, 46 (02): : 219 - 250
  • [7] Higher-Order Bessel Beams Launchers Comparison
    Mazzinghi, Agnese
    Freni, Angelo
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 2541 - 2542
  • [8] Generating superpositions of higher-order Bessel beams
    Vasilyeu, Ruslan
    Dudley, Angela
    Khilo, Nikolai
    Forbes, Andrew
    OPTICS EXPRESS, 2009, 17 (26): : 23389 - 23395
  • [9] Propagation of higher order Bessel–Gaussian beams in turbulence
    H.T. Eyyuboğlu
    Applied Physics B, 2007, 88 : 259 - 265
  • [10] Learning Higher Order Potentials For MRFs
    Khandelwal, Dinesh
    Singla, Parag
    Arora, Chetan
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 812 - 820