Dynamical localization transition in the non-Hermitian lattice gauge theory

被引:0
|
作者
Jun-Qing Cheng
Shuai Yin
Dao-Xin Yao
机构
[1] Sun Yat-Sen University,State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics
[2] Great Bay University,School of Physical Sciences
[3] Great Bay Institute for Advanced Study,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Local constraint in the lattice gauge theory provides an exotic mechanism that facilitates the disorder-free localization. However, the understanding of nonequilibrium dynamics in the non-Hermitian lattice gauge model remains limited. Here, we investigate the quench dynamics in a system of spinless fermions with nonreciprocal hopping in the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} gauge field. By employing a duality mapping, we systematically explore the non-Hermitian skin effect, localization-delocalization transition, and real-complex transition. Through the identification of diverse scaling behaviors of quantum mutual information for fermions and spins, we propose that the non-Hermitian quantum disentangled liquids exist both in the localized and delocalized phases, the former originates from the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} gauge field and the latter arises from the non-Hermitian skin effect. Furthermore, we demonstrate that the nonreciprocal dissipation causes the flow of quantum information. Our results provide valuable insights into the nonequilibrium dynamics in the gauge field, and may be experimentally validated using quantum simulators.
引用
收藏
相关论文
共 50 条
  • [1] Dynamical localization transition in the non-Hermitian lattice gauge theory
    Cheng, Jun-Qing
    Yin, Shuai
    Yao, Dao-Xin
    COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [2] Dynamical localization in non-Hermitian quasicrystals
    Dai, C. M.
    Zhang, Yunbo
    Yi, X. X.
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [3] Localization transitions in a non-Hermitian quasiperiodic lattice
    Acharya, Aruna Prasad
    Datta, Sanjoy
    PHYSICAL REVIEW B, 2024, 109 (02)
  • [4] Localization in non-Hermitian asymmetric rhombic lattice
    Zhang, S. M.
    Jin, L.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [5] Observing Dynamical Currents in a Non-Hermitian Momentum Lattice
    Rosa-Medina, Rodrigo
    Ferri, Francesco
    Finger, Fabian
    Dogra, Nishant
    Kroeger, Katrin
    Lin, Rui
    Chitra, R.
    Donner, Tobias
    Esslinger, Tilman
    PHYSICAL REVIEW LETTERS, 2022, 128 (14)
  • [6] Localization transition in non-Hermitian coupled chain
    Gu Yan
    Lu Zhan-Peng
    ACTA PHYSICA SINICA, 2024, 73 (19)
  • [7] Localization transition in incommensurate non-Hermitian systems
    Jazaeri, A
    Satija, II
    PHYSICAL REVIEW E, 2001, 63 (03):
  • [8] Dynamical localization in a non-Hermitian Floquet synthetic system
    可汗
    张嘉明
    霍良
    赵文垒
    Chinese Physics B, 2024, 33 (05) : 161 - 165
  • [9] Dynamical localization in a non-Hermitian Floquet synthetic system
    Ke, Han
    Zhang, Jiaming
    Huo, Liang
    Zhao, Wen-Lei
    CHINESE PHYSICS B, 2024, 33 (05)
  • [10] Nonunitary Scaling Theory of Non-Hermitian Localization
    Kawabata, Kohei
    Ryu, Shinsei
    PHYSICAL REVIEW LETTERS, 2021, 126 (16)