Reset Thresholds of Transformation Monoids

被引:0
|
作者
I. Rystsov
M. Szykuła
机构
[1] National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
[2] University of Wroclaw,undefined
[3] Faculty of Mathematics and Computer Science,undefined
来源
关键词
Čherný conjecture; finite automaton; finite monoid; transformation monoid;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the Čherný conjecture for automata, we introduce the concept of monoidal automata, which allows us to formulate the Čherný conjecture for monoids. We obtain the upper bounds on the reset threshold of monoids with certain properties. In particular, we obtain a quadratic upper bound if the transformation monoid contains a primitive group of permutations and a singular of maximal rank with only one point of contraction.
引用
收藏
页码:189 / 197
页数:8
相关论文
共 50 条
  • [1] Reset Thresholds of Transformation Monoids
    Rystsov, I.
    Szykula, M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (02) : 189 - 197
  • [2] Approximation of Reset Thresholds with Greedy Algorithms
    Ananichev, Dimitry S.
    Gusev, Vladimir V.
    FUNDAMENTA INFORMATICAE, 2016, 145 (03) : 221 - 227
  • [3] On automatic homeomorphicity for transformation monoids
    Pech, Christian
    Pech, Maja
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (01): : 129 - 148
  • [4] Reset Thresholds of Automata with Two Cycle Lengths
    Gusev, Vladimir V.
    Pribavkina, Elena V.
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2015, 26 (07) : 953 - 966
  • [5] Reset Thresholds of Automata with Two Cycle Lengths
    Gusev, Vladimir V.
    Pribavkina, Elena V.
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, CIAA 2014, 2014, 8587 : 200 - 210
  • [6] Topological embeddings into transformation monoids
    Bardyla, Serhii
    Elliott, Luke
    Mitchell, James D.
    Peresse, Yann
    FORUM MATHEMATICUM, 2024, 36 (06) : 1537 - 1554
  • [7] CHARACTERIZATION OF IDEMPOTENT TRANSFORMATION MONOIDS
    BEAUDRY, M
    INFORMATION PROCESSING LETTERS, 1989, 31 (03) : 163 - 166
  • [8] On automatic homeomorphicity for transformation monoids
    Christian Pech
    Maja Pech
    Monatshefte für Mathematik, 2016, 179 : 129 - 148
  • [9] UNIVERSALITY OF THE LATTICE OF TRANSFORMATION MONOIDS
    Pinsker, Michael
    Shelah, Saharon
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 3005 - 3011
  • [10] Simplicity of Augmentation Submodules for Transformation Monoids
    Shahzamanian, M. H.
    Steinberg, B.
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (04) : 1029 - 1051