Existence of Positive Solutions for a Class of Critical Fractional Schrödinger Equations with Potential Vanishing at Infinity

被引:0
|
作者
Quanqing Li
Kaimin Teng
Xian Wu
机构
[1] Honghe University,Department of Mathematics
[2] Taiyuan University of Technology,Department of Mathematics
[3] Yunnan Normal University,Department of Mathematics
来源
关键词
Fractional Schrödinger equation; Quasicritical growth; Variational method; 35J20; 35J70; 35P05; 35P30; 34B15; 58E05; 47H04;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the following critical fractional Schrödinger equation (-Δ)su+V(x)u=|u|2s∗-2u+λK(x)f(u),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^su+V(x)u=|u|^{2_s^*-2}u+\lambda K(x)f(u), \ x \in \mathbb {R}^N, \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} denotes the fractional Laplacian of order s, V,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V, \ K$$\end{document} are nonnegative continuous functions satisfying some conditions and f is a continuous function, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document} and 2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_s^*=\frac{2N}{N-2s}$$\end{document}. We prove that the equation has a positive solution for large λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} by the variational method.
引用
收藏
相关论文
共 50 条
  • [1] Existence of positive solutions for a class of critical fractional Schrödinger–Poisson system with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Zhang, Youpei
    Applied Mathematics Letters, 2020, 99
  • [2] Existence of Positive Solutions for a Class of Critical Fractional Schrodinger Equations with Potential Vanishing at Infinity
    Li, Quanqing
    Teng, Kaimin
    Wu, Xian
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [3] Existence of positive solutions for a critical fractional Kirchhoff equation with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Yang, Xianyong
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (04) : 717 - 730
  • [4] Fractional Schrödinger equations involving potential vanishing at infinity and supercritical exponents
    J. A. Cardoso
    D. S. dos Prazeres
    U. B. Severo
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [5] Existence of positive solutions for a class of critical fractional Schrodinger-Poisson system with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Zhang, Youpei
    APPLIED MATHEMATICS LETTERS, 2020, 99
  • [6] Infinitely many solutions for fractional Schrödinger equation with potential vanishing at infinity
    Yongzhen Yun
    Tianqing An
    Jiabin Zuo
    Dafang Zhao
    Boundary Value Problems, 2019
  • [7] Positive solutions for a class of quasilinear Schrödinger equations with vanishing potentials
    Xiaonan Liu
    Haibo Chen
    Boundary Value Problems, 2017
  • [8] Existence and concentration of positive solutions for p-fractional Schrödinger equations
    Vincenzo Ambrosio
    Giovany M. Figueiredo
    Teresa Isernia
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 317 - 344
  • [9] On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger–Choquard equations
    Zu Gao
    Xianhua Tang
    Sitong Chen
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [10] Existence of positive solutions for a critical nonlinear Schrödinger equation with vanishing or coercive potentials
    Shaowei Chen
    Boundary Value Problems, 2013