We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(∂ xt, xt). The state space is a closed subset in a manifold of C2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}$$\end{document}.
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
Liang, Jitai
Niu, Ben
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
Niu, Ben
Wei, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R ChinaHarbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China