Linearized Stability for Semiflows Generated by a Class of Neutral Equations, with Applications to State-Dependent Delays

被引:0
|
作者
Hans-Otto Walther
机构
[1] Universität Giessen,Mathematisches Institut
关键词
Functional differential equation; Neutral; State-dependent delay; Stability; 34K40; 34K20; 37L15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(∂ xt, xt). The state space is a closed subset in a manifold of C2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}$$\end{document}.
引用
收藏
页码:439 / 462
页数:23
相关论文
共 50 条