On the non-isentropic compressible Navier–Stokes equations with cylindrical symmetry: boundary layers and convergence rate at vanishing shear viscosity

被引:0
|
作者
Xinhua Zhao
机构
[1] Guangdong Polytechnic Normal University,School of Mathematics and Systems Science
关键词
Boundary layer; Non-isentropic compressible Navier–Stokes; Cylindrical symmetry; Vanishing shear viscosity; 76N20; 35Q30; 76N10; 76N17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the initial-boundary value problem for the non-isentropic compressible Navier–Stokes equations with cylindrical symmetry in three dimensions. It is well known that boundary layers present when the shear viscosity vanishes. In this paper, we derive the explicit boundary layer equations of Prandtl type for each boundary with heat conductivity coefficient dependent on temperature or as a constant. Furthermore, we improve the convergence rate of the vanishing shear viscosity to O(ϵ516)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {O}(\epsilon ^{\frac{5}{16}}) $$\end{document} without any smallness assumptions for the initial and boundary data.
引用
收藏
相关论文
共 50 条
  • [1] On the non-isentropic compressible Navier-Stokes equations with cylindrical symmetry: boundary layers and convergence rate at vanishing shear viscosity
    Zhao, Xinhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [2] Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry
    Wen, Huanyao
    Yang, Tong
    Zhao, Xinhua
    Zhu, Changjiang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 : 99 - 126
  • [3] Vanishing Shear Viscosity and Boundary Layer for the Navier–Stokes Equations with Cylindrical Symmetry
    Xulong Qin
    Tong Yang
    Zheng-an Yao
    Wenshu Zhou
    Archive for Rational Mechanics and Analysis, 2015, 216 : 1049 - 1086
  • [4] VANISHING SHEAR VISCOSITY LIMIT FOR THE NAVIER-STOKES EQUATIONS WITH CYLINDRICAL SYMMETRY: BOUNDARY LAYER AND OPTIMAL CONVERGENCE RATE
    Wang, Yinghui
    Wen, Huanyao
    Zhang, Weihao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 1631 - 1675
  • [5] Vanishing Shear Viscosity and Boundary Layer for the Navier-Stokes Equations with Cylindrical Symmetry
    Qin, Xulong
    Yang, Tong
    Yao, Zheng-an
    Zhou, Wenshu
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (03) : 1049 - 1086
  • [6] Boundary layers for compressible Navier-Stokes equations with density-dependent viscosity and cylindrical symmetry
    Yao, Lei
    Zhang, Ting
    Zhu, Changjiang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05): : 677 - 709
  • [7] Long time existence of the non-isentropic slightly compressible Navier-Stokes equations with boundary conditions
    Ju, Qiangchang
    Xu, Jianjun
    NONLINEARITY, 2024, 37 (06)
  • [8] Vanishing capillarity limit of the compressible non-isentropic Navier-Stokes-Korteweg system to Navier-Stokes system
    Hou, Xiaofeng
    Yao, Lei
    Zhu, Changjiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) : 421 - 446
  • [9] STABILITY OF RAREFACTION WAVE FOR THE COMPRESSIBLE NON-ISENTROPIC NAVIER-STOKES-MAXWELL EQUATIONS
    Yao, Huancheng
    Yin, Haiyan
    Zhu, Changjiang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1297 - 1317
  • [10] ON THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE: FROM NON-ISENTROPIC FLOW TO ISENTROPIC FLOW
    He, Ling-Bing
    Xu, Li
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (07) : 3489 - 3530