Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume

被引:0
|
作者
Verena Maier-Kiener
Karsten Durst
机构
[1] Montanuniversität Leoben,Department Physical Metallurgy and Materials Testing, Chair Physical Metallurgy and Metallic Materials
[2] Technical University Darmstadt,Physical Metallurgy
来源
JOM | 2017年 / 69卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.
引用
收藏
页码:2246 / 2255
页数:9
相关论文
共 50 条
  • [1] Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume
    Maier-Kiener, Verena
    Durst, Karsten
    JOM, 2017, 69 (11) : 2246 - 2255
  • [2] A micromechanical approach to the stress–strain relations, strain-rate sensitivity and activation volume of nanocrystalline materials
    J. Li
    G. J. Weng
    International Journal of Mechanics and Materials in Design, 2013, 9 : 141 - 152
  • [3] Evaluation of strain-rate sensitivity of ion-irradiated austenitic steel using strain-rate jump nanoindentation tests
    Kasada, Ryuta
    Konishi, Satoshi
    Hamaguchi, Dai
    Ando, Masami
    Tanigawa, Hiroyasu
    FUSION ENGINEERING AND DESIGN, 2016, 109 : 1507 - 1510
  • [4] Strain-rate sensitivity of the hardness of crystalline materials under dynamic nanoindentation
    Yu. I. Golovin
    Yu. L. Iunin
    A. I. Tyurin
    Doklady Physics, 2003, 48 : 505 - 508
  • [5] Strain-rate sensitivity of the hardness of crystalline materials under dynamic nanoindentation
    Golovin, YI
    Lunin, YL
    Tyurin, AI
    DOKLADY PHYSICS, 2003, 48 (09) : 505 - 508
  • [6] A micromechanical approach to the stress-strain relations, strain-rate sensitivity and activation volume of nanocrystalline materials
    Li, J.
    Weng, G. J.
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2013, 9 (02) : 141 - 152
  • [7] Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al
    Maier, Verena
    Durst, Karsten
    Mueller, Johannes
    Backes, Bjoern
    Hoeppel, Heinz Werner
    Goeken, Mathias
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (11) : 1421 - 1430
  • [8] Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al
    Verena Maier
    Karsten Durst
    Johannes Mueller
    Björn Backes
    Heinz Werner Höppel
    Mathias Göken
    Journal of Materials Research, 2011, 26 : 1421 - 1430
  • [9] Determination of the strain-rate sensitivity of ultrafine-grained materials by spherical nanoindentation
    Feldner, Patrick
    Merle, Benoit
    Goeken, Mathias
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (08) : 1466 - 1473
  • [10] Determination of the strain-rate sensitivity of ultrafine-grained materials by spherical nanoindentation
    Patrick Feldner
    Benoit Merle
    Mathias Göken
    Journal of Materials Research, 2017, 32 : 1466 - 1473