Optimality conditions based on the Fréchet second-order subdifferential

被引:0
|
作者
D. T. V. An
N. D. Yen
机构
[1] Thai Nguyen University of Sciences,Department of Mathematics and Informatics
[2] Vietnam Academy of Science and Technology,Institute of Mathematics
来源
关键词
Constrained optimization problems on Banach spaces; Second-order necessary optimality conditions; Fréchet second-order subdifferential; Second-order tangent set; Generalized polyhedral convex set; 49K27; 49J53; 90C30; 90C46; 90C20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on second-order necessary optimality conditions for constrained optimization problems on Banach spaces. For problems in the classical setting, where the objective function is C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-smooth, we show that strengthened second-order necessary optimality conditions are valid if the constraint set is generalized polyhedral convex. For problems in a new setting, where the objective function is just assumed to be C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-smooth and the constraint set is generalized polyhedral convex, we establish sharp second-order necessary optimality conditions based on the Fréchet second-order subdifferential of the objective function and the second-order tangent set to the constraint set. Three examples are given to show that the used hypotheses are essential for the new theorems. Our second-order necessary optimality conditions refine and extend several existing results.
引用
收藏
页码:351 / 365
页数:14
相关论文
共 50 条
  • [1] Optimality conditions based on the Frechet second-order subdifferential
    An, D. T. V.
    Yen, N. D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 81 (02) : 351 - 365
  • [2] Second-Order Optimality Conditions for Vector Problems with Continuously Fréchet Differentiable Data and Second-Order Constraint Qualifications
    Vsevolod I. Ivanov
    Journal of Optimization Theory and Applications, 2015, 166 : 777 - 790
  • [3] Second-Order Optimality Conditions for Vector Problems with Continuously Fr,chet Differentiable Data and Second-Order Constraint Qualifications
    Ivanov, Vsevolod I.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (03) : 777 - 790
  • [4] FR\'ECHET SECOND-ORDER SUBDIFFERENTIALS OF LAGRANGIAN FUNCTIONS AND OPTIMALITY CONDITIONS
    An, Duong Thi Viet
    Xu, Hong-Kun
    Yen, Nguyen Dong
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (02) : 766 - 784
  • [5] A note on second-order optimality conditions
    Pastor, Karel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1964 - 1969
  • [6] On a Conjecture in Second-Order Optimality Conditions
    Behling, Roger
    Haeser, Gabriel
    Ramos, Alberto
    Viana, Daiana S.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (03) : 625 - 633
  • [7] On a Conjecture in Second-Order Optimality Conditions
    Roger Behling
    Gabriel Haeser
    Alberto Ramos
    Daiana S. Viana
    Journal of Optimization Theory and Applications, 2018, 176 : 625 - 633
  • [8] SUBDIFFERENTIAL OF THE SECOND ORDER AND CONDITION OF THE OPTIMALITY
    Sadygov, Misraddin A.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 324 - 326
  • [9] On second-order optimality conditions for nonlinear programming
    Andreani, R.
    Martinez, J. M.
    Schuverdt, M. L.
    OPTIMIZATION, 2007, 56 (5-6) : 529 - 542
  • [10] On second-order optimality conditions in nonlinear optimization
    Andreani, Roberto
    Behling, Roger
    Haeser, Gabriel
    Silva, Paulo J. S.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 22 - 38