The specificity and high affinity binding of antibodies provides these molecules with ideal properties for delivering a payload to target cells. This concept has been commercialized for cancer therapies using toxin- or radionucleotide-conjugated antibodies that are designed to selectively deliver cytotoxic molecules to cancer cells. Exploiting the same effective characteristics of antibodies, antibody-targeted vaccines (ATV) are designed to deliver disease-specific antigens to professional antigen-presenting cells (APCs), thus enabling the host's immune system to recognize and eliminate malignant or infected cells through adaptive immunity. The concept of ATVs has been in development for many years, and recently has entered clinical trials. Early studies with ATVs focused on the ability to induce humoral immunity in the absence of adjuvants. More recently, ATVs targeted to C-type lectin receptors have been exploited for induction of potent helper and cytolytic T-cell responses. To maximize their stimulatory capacity, the ATVs are being evaluated with a variety of adjuvants or other immunostimulatory agents. In the absence of co-administered immunostimulatory signals, APC-targeting can induce antigen-specific tolerance and, thus, may also be exploited in developing specific treatments for autoimmune and allergic diseases, or for preventing transplant rejection. The successful clinical application of this new class of antibody-based products will clearly depend on using appropriate combinations with other strategies that influence the immune system.