Efficient implementation of the Metropolis-Hastings algorithm, with application to the Cormack–Jolly–Seber model

被引:0
|
作者
William A. Link
Richard J. Barker
机构
[1] USGS Patuxent Wildlife Research Center,Department of Mathematics and Statistics
[2] University of Otago,undefined
关键词
Cormack–Jolly–Seber model; Mark-recapture analysis; Markov chain Monte Carlo; Metropolis-Hastings algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Judicious choice of candidate generating distributions improves efficiency of the Metropolis-Hastings algorithm. In Bayesian applications, it is sometimes possible to identify an approximation to the target posterior distribution; this approximate posterior distribution is a good choice for candidate generation. These observations are applied to analysis of the Cormack–Jolly–Seber model and its extensions.
引用
收藏
页码:79 / 87
页数:8
相关论文
共 50 条
  • [1] Efficient implementation of the Metropolis-Hastings algorithm, with application to the Cormack-Jolly-Seber model
    Link, William A.
    Barker, Richard J.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2008, 15 (01) : 79 - 87
  • [2] A history of the Metropolis-Hastings algorithm
    Hitchcock, DB
    AMERICAN STATISTICIAN, 2003, 57 (04): : 254 - 257
  • [3] UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM
    CHIB, S
    GREENBERG, E
    AMERICAN STATISTICIAN, 1995, 49 (04): : 327 - 335
  • [4] The Implicit Metropolis-Hastings Algorithm
    Neklyudov, Kirill
    Egorov, Evgenii
    Vetrov, Dmitry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Efficient Quantum Walk Circuits for Metropolis-Hastings Algorithm
    Lemieux, Jessica
    Heim, Bettina
    Poulin, David
    Svore, Krysta
    Troyer, Matthias
    QUANTUM, 2020, 4
  • [6] SMOOTHNESS OF METROPOLIS-HASTINGS ALGORITHM AND APPLICATION TO ENTROPY ESTIMATION
    Chauveau, Didier
    Vandekerkhove, Pierre
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 419 - 431
  • [7] A Metropolis-Hastings Algorithm for Task Allocation
    Hamza, Doha
    Toonsi, Sarah
    Shamma, Jeff S.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4539 - 4545
  • [8] Maximal Couplings of the Metropolis-Hastings Algorithm
    O'Leary, John
    Wang, Guanyang
    Jacob, Pierre E.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [9] Density estimation for the Metropolis-Hastings algorithm
    Sköld, M
    Roberts, GO
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (04) : 699 - 718
  • [10] Geometric ergodicity of a more efficient conditional Metropolis-Hastings algorithm
    Hui, Jianan
    Flegal, James M.
    Johnson, Alicia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (19) : 4528 - 4547