On the spectral abscissa and the logarithmic norm

被引:0
|
作者
A. I. Perov
I. D. Kostrub
机构
[1] Voronezh State University,
来源
Mathematical Notes | 2017年 / 101卷
关键词
spectral radius and the norm of a matrix; spectral abscissa and the logarithmic norm of a matrix; Young’s inequality; Hölder’s inequality; Riesz theorem; Hölder norm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, both well-known and new properties of the spectral abscissa and the logarithmic norm are described. In addition to well-known formulas for the norm of a matrix and for its logarithmic norm in cubic, octahedral, spherical norms, various estimates for these quantities in an arbitrary Ho¨ lder norm are proved.
引用
收藏
页码:677 / 687
页数:10
相关论文
共 50 条
  • [1] On the Spectral Abscissa and the Logarithmic Norm
    Perov, A. I.
    Kostrub, I. D.
    MATHEMATICAL NOTES, 2017, 101 (3-4) : 677 - 687
  • [2] How close can the logarithmic norm of a matrix pencil come to the spectral abscissa?
    Higueras, I
    García-Celayeta, B
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 472 - 478
  • [3] Higher order logarithmic derivatives of matrices in the spectral norm
    Bhatia, R
    Elsner, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (03) : 662 - 668
  • [4] SPECTRAL ABSCISSA OF PARTITIONED MATRICES
    DEUTSCH, E
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 50 (01) : 66 - 73
  • [5] On Semiconvergence, Eventual Positivity, and Accretiveness of Signed Laplacians: A Spectral Abscissa Versus Log-Norm Perspective
    Zhu, Shouchong
    Tian, Ye
    Chen, Wei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (04) : 2622 - 2629
  • [6] Absolute Logarithmic Norm
    Perov, A. I.
    Kostrub, I. D.
    Kleshchina, O. I.
    Dikarev, E. E.
    RUSSIAN MATHEMATICS, 2018, 62 (04) : 60 - 73
  • [7] THE SMOOTHED SPECTRAL ABSCISSA FOR ROBUST STABILITY OPTIMIZATION
    Vanbiervliet, Joris
    Vandereycken, Bart
    Michiels, Wim
    Vandewalle, Stefan
    Diehl, Moritz
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 156 - 171
  • [8] BOUNDS FOR SPECTRAL ABSCISSA OF AN ELEMENT IN A BANACH ALGEBRA
    OLIFIROV, KL
    MATHEMATICAL NOTES, 1975, 18 (5-6) : 1050 - 1053
  • [9] Estimating the spectral abscissa of switched linear systems
    Lin, Meili
    Han, Junfeng
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1417 - 1424
  • [10] Formulas for the norm and for the logarithmic norm of the linear operator on the subspace
    Perov, AI
    DOKLADY AKADEMII NAUK, 1999, 368 (05) : 601 - 603