The Liouville-type theorem for problems with nonstandard growth derived by Caccioppoli-type estimate

被引:0
|
作者
Sylwia Dudek
机构
[1] Cracow University of Technology,Department of Applied Mathematics, Faculty of Computer Science and Telecommunications
来源
关键词
Caccioppoli inequality; Liouville-type theorem; Nonstandard growth; Variable exponent Lebesgue space; 26D10; 35J60; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
Let u be a nonnegative solution to the PDI -divA(x,u,∇u)⩾B(x,u,∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,\mathrm{div} \mathcal {A}(x, u, \nabla u)\geqslant \mathcal {B}(x,u, \nabla u)$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} are differential operators with p(x)-type growth. As a consequence of the Caccioppoli-type inequality for the solution u, we obtain the Liouville-type theorem under some integral condition. We simplify the assumptions on functions A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {A}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {B}$$\end{document}, and we do not restrict the range of p(x) by the dimension n, therefore we can cover quite general family of problems.
引用
收藏
页码:75 / 91
页数:16
相关论文
共 50 条