Semi on-line scheduling on three processors with known sum of the tasks

被引:1
|
作者
Enrico Angelelli
Maria Grazia Speranza
Zsolt Tuza
机构
[1] University of Brescia,Department of Quantitative Methods
[2] Hungary Academy of Science,Comp. and Autom. Inst.
[3] University of Veszprem,Department of Computer Science
来源
Journal of Scheduling | 2007年 / 10卷
关键词
Semi on-line scheduling; Parallel processors; Competitive analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a semi on-line version of the multiprocessor scheduling problem on three processors, where the total size of the tasks is known in advance. We prove a lower bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1+\frac{\sqrt{129}-9}{6}>1.3929$\end{document} on the competitive ratio of any algorithm and propose a simple algorithm with competitive ratio equal to 1.5. The performance is improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1+\frac{8}{19}<1.4211$\end{document} by a preprocessing strategy. The latter algorithm is only 2% away from the lower bound.
引用
收藏
页码:263 / 269
页数:6
相关论文
共 50 条
  • [1] Semi on-line scheduling on three processors with known sum of the tasks
    Angelelli, Enrico
    Grazia Speranza, Maria
    Tuza, Zsolt
    JOURNAL OF SCHEDULING, 2007, 10 (4-5) : 263 - 269
  • [2] The On-Line Multiprocessor Scheduling Problem with Known Sum of the Tasks
    E. Angelelli
    Á.B. Nagy
    M.G. Speranza
    Zs. Tuza
    Journal of Scheduling, 2004, 7 : 421 - 428
  • [3] The on-line multiprocessor scheduling problem with known sum of the tasks
    Angelelli, E
    Nagy, AB
    Speranza, MG
    Tuza, Z
    JOURNAL OF SCHEDULING, 2004, 7 (06) : 421 - 428
  • [4] New bounds and algorithms for on-line scheduling: two identical processors, known sum and upper bound on the tasks
    Angelelli, E
    Speranza, MG
    Tuza, Z
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2006, 8 (01): : 1 - 15
  • [5] Randomized on-line scheduling on three processors
    Tichy, T
    OPERATIONS RESEARCH LETTERS, 2004, 32 (02) : 152 - 158
  • [6] Geometric representation for semi on-line scheduling on uniform processors
    Angelelli, Enrico
    Speranza, Maria Grazia
    Szoldatics, Jozsef
    Tuza, Zsolt
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (03): : 421 - 428
  • [7] Two uniform machines with nearly equal speeds: unified approach to known sum and known optimum in semi on-line scheduling
    György Dósa
    M. Grazia Speranza
    Zsolt Tuza
    Journal of Combinatorial Optimization, 2011, 21 : 458 - 480
  • [8] Two uniform machines with nearly equal speeds: unified approach to known sum and known optimum in semi on-line scheduling
    Dosa, Gyoergy
    Speranza, M. Grazia
    Tuza, Zsolt
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 21 (04) : 458 - 480
  • [9] On-Line Parallelizable Task Scheduling on Parallel Processors
    Khludova, Marina
    PARALLEL COMPUTING TECHNOLOGIES (PACT 2013), 2013, 7979 : 229 - 233
  • [10] Preemptive on-line scheduling for two uniform processors
    Wen, JJ
    Du, DL
    OPERATIONS RESEARCH LETTERS, 1998, 23 (3-5) : 113 - 116