Principal component analysis with missing values: a comparative survey of methods

被引:0
|
作者
Stéphane Dray
Julie Josse
机构
[1] Université de Lyon,Applied Mathematics Department
[2] Université Lyon 1,undefined
[3] CNRS,undefined
[4] UMR5558,undefined
[5] Laboratoire de Biométrie et Biologie Evolutive,undefined
[6] Agrocampus Ouest,undefined
来源
Plant Ecology | 2015年 / 216卷
关键词
Imputation; Ordination; PCA; Traits;
D O I
暂无
中图分类号
学科分类号
摘要
Principal component analysis (PCA) is a standard technique to summarize the main structures of a data table containing the measurements of several quantitative variables for a number of individuals. Here, we study the case where some of the data values are missing and propose a review of methods which accommodate PCA to missing data. In plant ecology, this statistical challenge relates to the current effort to compile global plant functional trait databases producing matrices with a large amount of missing values. We present several techniques to consider or estimate (impute) missing values in PCA and compare them using theoretical considerations. We carried out a simulation study to evaluate the relative merits of the different approaches in various situations (correlation structure, number of variables and individuals, and percentage of missing values) and also applied them on a real data set. Lastly, we discuss the advantages and drawbacks of these approaches, the potential pitfalls and future challenges that need to be addressed in the future.
引用
收藏
页码:657 / 667
页数:10
相关论文
共 50 条
  • [1] Principal component analysis with missing values: a comparative survey of methods
    Dray, Stephane
    Josse, Julie
    PLANT ECOLOGY, 2015, 216 (05) : 657 - 667
  • [2] Missing values in principal component analysis
    Grung, B
    Manne, R
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) : 125 - 139
  • [3] Dynamic principal component analysis with missing values
    Kwon, Junhyeon
    Oh, Hee-Seok
    Lim, Yaeji
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (11) : 1957 - 1969
  • [4] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [6] Dealing with missing values and outliers in principal component analysis
    Stanimirova, I.
    Daszykowski, M.
    Walczak, B.
    TALANTA, 2007, 72 (01) : 172 - 178
  • [7] Principal component analysis with interval imputed missing values
    Paola Zuccolotto
    AStA Advances in Statistical Analysis, 2012, 96 : 1 - 23
  • [8] Principal Component Analysis of Process Datasets with Missing Values
    Severson, Kristen A.
    Molaro, Mark C.
    Braatz, Richard D.
    PROCESSES, 2017, 5 (03)
  • [9] Robust Principal Component Analysis of Data with Missing Values
    Karkkainen, Tommi
    Saarela, Mirka
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 140 - 154
  • [10] Practical Approaches to Principal Component Analysis in the Presence of Missing Values
    Ilin, Alexander
    Raiko, Tapani
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1957 - 2000