On Local Convergence of the Method of Alternating Projections

被引:0
|
作者
Dominikus Noll
Aude Rondepierre
机构
[1] Université de Toulouse,Institut de Mathématiques
[2] INSA Toulouse,Institut de Mathématiques
关键词
Alternating projections; Local convergence; Subanalytic set; Separable intersection; Tangential intersection; Hölder regularity; Gerchberg–Saxton error reduction; Primary: 65K10; Secondary: 90C30; 32B20; 47H04; 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
The method of alternating projections is a classical tool to solve feasibility problems. Here we prove local convergence of alternating projections between subanalytic sets A,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B$$\end{document} under a mild regularity hypothesis on one of the sets. We show that the speed of convergence is O(k-ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(k^{-\rho })$$\end{document} for some ρ∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in (0,\infty )$$\end{document}.
引用
收藏
页码:425 / 455
页数:30
相关论文
共 50 条