ClustGeo: an R package for hierarchical clustering with spatial constraints

被引:0
|
作者
Marie Chavent
Vanessa Kuentz-Simonet
Amaury Labenne
Jérôme Saracco
机构
[1] Université de Bordeaux,IMB, UMR CNRS 5251, Inria Bordeaux Sud Ouest, CQFD Team
[2] IRSTEA,UR ETBX, Centre de Bordeaux
[3] ENSC - Bordeaux INP,IMB, UMR CNRS 5251, Inria Bordeaux Sud Ouest, CQFD Team
来源
Computational Statistics | 2018年 / 33卷
关键词
Ward-like hierarchical clustering; Soft contiguity constraints; Pseudo-inertia; Non-Euclidean dissimilarities; Geographical distances;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a Ward-like hierarchical clustering algorithm including spatial/geographical constraints. Two dissimilarity matrices D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_0$$\end{document} and D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1$$\end{document} are inputted, along with a mixing parameter α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,1]$$\end{document}. The dissimilarities can be non-Euclidean and the weights of the observations can be non-uniform. The first matrix gives the dissimilarities in the “feature space” and the second matrix gives the dissimilarities in the “constraint space”. The criterion minimized at each stage is a convex combination of the homogeneity criterion calculated with D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_0$$\end{document} and the homogeneity criterion calculated with D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1$$\end{document}. The idea is then to determine a value of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} which increases the spatial contiguity without deteriorating too much the quality of the solution based on the variables of interest i.e. those of the feature space. This procedure is illustrated on a real dataset using the R package ClustGeo.
引用
收藏
页码:1799 / 1822
页数:23
相关论文
共 50 条
  • [1] <bold>ClustGeo</bold>: an R package for hierarchical clustering with spatial constraints
    Chavent, Marie
    Kuentz-Simonet, Vanessa
    Labenne, Amaury
    Saracco, Jerome
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1799 - 1822
  • [2] Pvclust: an R package for assessing the uncertainty in hierarchical clustering
    Suzuki, R
    Shimodaira, H
    BIOINFORMATICS, 2006, 22 (12) : 1540 - 1542
  • [3] dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering
    Galili, Tal
    BIOINFORMATICS, 2015, 31 (22) : 3718 - 3720
  • [4] The R Package HCV for Hierarchical Clustering from Vertex-links
    Tzeng, ShengLi
    Hsu, Hao-Yun
    arXiv, 2022,
  • [5] NOMCLUST: AN R PACKAGE FOR HIERARCHICAL CLUSTERING OF OBJECTS CHARACTERIZED BY NOMINAL VARIABLES
    Sulc, Zdenek
    Rezankova, Hana
    9TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2015, : 1581 - 1590
  • [6] Hierarchical Clustering with Spatial Constraints and Standardized Incidence Ratio in Tuberculosis Data
    Camelo Aguiar, Dalila
    Gutierrez Sanchez, Ramon
    Silva Camelo, Edwirde Luiz
    MATHEMATICS, 2020, 8 (09)
  • [7] Correlation-based hierarchical clustering of time series with spatial constraints
    Benevento, Alessia
    Durante, Fabrizio
    SPATIAL STATISTICS, 2024, 59
  • [8] Nomclust 2.0: an R package for hierarchical clustering of objects characterized by nominal variables
    Sulc, Zdenek
    Cibulkova, Jana
    Rezankova, Hana
    COMPUTATIONAL STATISTICS, 2022, 37 (05) : 2161 - 2184
  • [9] Nomclust 2.0: an R package for hierarchical clustering of objects characterized by nominal variables
    Zdenek Sulc
    Jana Cibulkova
    Hana Rezankova
    Computational Statistics, 2022, 37 : 2161 - 2184
  • [10] HCsnip: An R Package for Semi-supervised Snipping of the Hierarchical Clustering Tree
    Obulkasim, Askar
    van de Wiel, Mark A.
    CANCER INFORMATICS, 2015, 14 : 1 - 19