Homology of Multi-Parameter Random Simplicial Complexes

被引:0
|
作者
Christopher F. Fowler
机构
[1] University of Washington,
来源
关键词
Random simplicial complexes; Homology; Cohomology; Phase transitions; 05C80; 55U10; 60B05; 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a multi-parameter model for randomly constructing simplicial complexes that interpolates between random clique complexes and Linial–Meshulam random k-dimensional complexes. Unlike these models, multi-parameter complexes exhibit nontrivial homology in numerous dimensions simultaneously. We establish upper and lower thresholds for the appearance of nontrivial cohomology in each dimension and characterize the behavior at criticality.
引用
收藏
页码:87 / 127
页数:40
相关论文
共 50 条
  • [1] Homology of Multi-Parameter Random Simplicial Complexes
    Fowler, Christopher F.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (01) : 87 - 127
  • [2] THE HOMOLOGY OF RANDOM SIMPLICIAL COMPLEXES IN THE MULTI-PARAMETER UPPER MODEL
    Farber, Michael
    Nowik, Tahl
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 256 (01) : 213 - 231
  • [3] Integral Homology of Random Simplicial Complexes
    Tomasz Łuczak
    Yuval Peled
    Discrete & Computational Geometry, 2018, 59 : 131 - 142
  • [4] Integral Homology of Random Simplicial Complexes
    Auczak, Tomasz
    Peled, Yuval
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (01) : 131 - 142
  • [5] Simplicial complexes: Spectrum, homology and random walks
    Parzanchevski, Ori
    Rosenthal, Ron
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (02) : 225 - 261
  • [6] A kernel for multi-parameter persistent homology
    Corbet R.
    Fugacci U.
    Kerber M.
    Landi C.
    Wang B.
    Computers and Graphics: X, 2019, 2
  • [7] Collapsibility and Vanishing of Top Homology in Random Simplicial Complexes
    Lior Aronshtam
    Nathan Linial
    Tomasz Łuczak
    Roy Meshulam
    Discrete & Computational Geometry, 2013, 49 : 317 - 334
  • [8] Collapsibility and Vanishing of Top Homology in Random Simplicial Complexes
    Aronshtam, Lior
    Linial, Nathan
    Luczak, Tomasz
    Meshulam, Roy
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (02) : 317 - 334
  • [9] Simplicial homology of random configurations
    Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, 46 rue Barrault, Paris, 75634, France
    不详
    Adv Appl Probab, 2 (325-347):
  • [10] SIMPLICIAL HOMOLOGY OF RANDOM CONFIGURATIONS
    Decreusefond, L.
    Ferraz, E.
    Randriambololona, H.
    Vergne, A.
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 325 - 347