Evidential combination of augmented multi-source of information based on domain adaptation

被引:0
|
作者
Linqing Huang
Zhunga Liu
Quan Pan
Jean Dezert
机构
[1] Northwestern Polytechnical University,School of Automation
[2] ONERA-The French Aerospace Lab,undefined
来源
关键词
information fusion; domain adaptation; evidence theory; belief functions; pattern classification;
D O I
暂无
中图分类号
学科分类号
摘要
In the applications of domain adaptation (DA), there may exist multiple source domains, and each source domain usually provides some auxiliary information for object classification. The combination of such complementary knowledge from different source domains is helpful for improving the accuracy. We propose an evidential combination of augmented multi-source of information (ECAMI) method. The information sources are augmented at first by merging several randomly selected source domains to generate extra auxiliary information. We can obtain one piece of classification result with the assistance of each information source based on DA. Then these multiple classification results are combined by belief functions theory, which is expert at dealing with the uncertain information. Nevertheless, the classification results derived from different information sources may have different weights. The optimal weights are calculated by minimizing an given error criteria defined by the distance between the combination result and the ground truth using some training data. For each object, the augmented information sources will produce multiple classification results that will be discounted by the learnt weights under the belief functions framework. Then the combination of these discounted results is employed to make the final class decision. The effectiveness of ECAMI is evaluated with respect to some related methods based on several real data sets, and the experimental results show that ECAMI can significantly improve the classification accuracy.
引用
收藏
相关论文
共 50 条
  • [1] Evidential combination of augmented multi-source of information based on domain adaptation
    Linqing HUANG
    Zhunga LIU
    Quan PAN
    Jean DEZERT
    ScienceChina(InformationSciences), 2020, 63 (11) : 38 - 55
  • [2] Evidential combination of augmented multi-source of information based on domain adaptation
    Huang, Linqing
    Liu, Zhunga
    Pan, Quan
    Dezert, Jean
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (11)
  • [3] Transformer Based Multi-Source Domain Adaptation
    Wright, Dustin
    Augenstein, Isabelle
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7963 - 7974
  • [4] Information-theoretic regularization for Multi-source Domain Adaptation
    Park, Geon Yeong
    Lee, Sang Wan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9194 - 9203
  • [5] Attention-Based Multi-Source Domain Adaptation
    Zuo, Yukun
    Yao, Hantao
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3793 - 3803
  • [6] Multi-source based approach for Visual Domain Adaptation
    Tiwari, Mrinalini
    Sanodiya, Rakesh Kumar
    Mathew, Jimson
    Saha, Sriparna
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Evidential network-based system reliability assessment by fusing multi-source evidential information
    Li, Xiaopeng
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (05) : 1681 - 1703
  • [8] A survey of multi-source domain adaptation
    Sun, Shiliang
    Shi, Honglei
    Wu, Yuanbin
    INFORMATION FUSION, 2015, 24 : 84 - 92
  • [9] Multi-Source Distilling Domain Adaptation
    Zhao, Sicheng
    Wang, Guangzhi
    Zhang, Shanghang
    Gu, Yang
    Li, Yaxian
    Song, Zhichao
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12975 - 12983
  • [10] BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION
    Sun, Shi-Liang
    Shi, Hong-Lei
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 24 - 28