Stickelberger ideals and divisor class numbers

被引:0
|
作者
Linsheng Yin
机构
[1] Department of Mathematical Sciences,
[2] Tsinghua University,undefined
[3] Beijing 100084,undefined
[4] P.R. China (lsyin@math.tsinghua.edu.cn) ,undefined
[5] Department of Mathematics,undefined
[6] University of the Saarland,undefined
[7] 66041 Saarbrücken,undefined
[8] Germany ,undefined
来源
Mathematische Zeitschrift | 2002年 / 239卷
关键词
Galois Group; Function Field; Group Ring; Class Number; Degree Zero;
D O I
暂无
中图分类号
学科分类号
摘要
Let K/k be a finite abelian extension of function fields with Galois group G. Using the Stickelberger elements associated to K/k studied by J. Tate, P. Deligne and D. Hayes, we construct an ideal I in the integral group ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{Z}[G]$\end{document} relative to the extension K/k, whose elements annihilate the group of divisor classes of degree zero of K and whose rank is equal to the degree of the extension. When K/k is a (wide or narrow) ray class extension, we compute the index of I in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{Z}[G]$\end{document}, which is equal to the divisor class number of K up to a trivial factor.
引用
收藏
页码:425 / 440
页数:15
相关论文
共 50 条