Modeling strategies for fabrics unit cell geometryapplication to permeability simulations.

被引:0
|
作者
G. Hivet
A. Wendling
E. Vidal-Salle
B. Laine
P. Boisse
机构
[1] Polytech Orléans-Université d’Orléans,PRISME Institute
[2] INSA de Lyon,Laboratoire de Mécanique des Contacts et des Solides
[3] Châtillon,ONERA
[4] Université d’Orléans,undefined
关键词
Geometrical model; fabrics; pre-processor; consistent model; textile; mesoscopical model; multi-scale;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical approaches at the elementary cell level represent a promising method to determine fabrics mechanical properties and permeability for example. But, these simulations generate lots of difficulties linked to the multi-scale constitution of the fabric and the large strains. A key point for meso 3D finite element simulation is the necessity to have an accurate 3D geometry of the fabric cell. The goal of this paper is to present an efficient strategy to obtain a consistent geometry of complex interlock unit cells. It is based on the commercial CAD software CATIA V5 and a new iterative algorithm. It enables to ensure both accuracy and consistency, i.e. contacts between yarns of the two networks are well described (no voids or interpenetration). Since complex fabrics are concerned, the iterative approach is dedicated to enable the user to get a consistent model using a various number of parameters depending on the fabric structure, the number of available data and the accuracy needed.
引用
收藏
页码:727 / 730
页数:3
相关论文
共 50 条
  • [1] MODELING STRATEGIES FOR FABRICS UNIT CELL GEOMETRY-APPLICATION TO PERMEABILITY SIMULATIONS.
    Hivet, G.
    Wendling, A.
    Vidal-Salle, E.
    Laine, B.
    Boisse, P.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 : 727 - 730
  • [2] Permeability of clustered fiber networks:: Modeling of the unit cell
    Frishfelds, V
    Lundström, TS
    Jakovics, A
    MECHANICS OF COMPOSITE MATERIALS, 2003, 39 (03) : 265 - 272
  • [3] Permeability of clustered fiber networks: Modeling of the unit cell
    Frishfelds, V.
    Lundstrom, T.S.
    Jakovics, A.
    Mekhanika Kompozitnykh Materialov, 2003, 39 (03): : 395 - 407
  • [4] Permeability of Clustered Fiber Networks: Modeling of the Unit Cell
    V. Frishfelds
    T. S. Lundström
    A. Jakovics
    Mechanics of Composite Materials, 2003, 39 : 265 - 272
  • [5] Sustainability and human settlements: Fundamental issues, modeling and simulations.
    Dreelin, Erin
    ORGANIZATION & ENVIRONMENT, 2007, 20 (02) : 260 - 263
  • [6] Dosing recommendations for duloxetine based on population pharmacokinetic modeling and simulations.
    Lobo, E.
    Quinlan, T.
    O'Brien, L.
    Heathman, M.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 83 : S22 - S22
  • [7] PARTICLE-IN-CELL METHOD AS A TOOL FOR DIODE SIMULATIONS.
    Westermann, Thomas
    Nuclear instruments and methods in physics research, 1988, A263 (2-3): : 271 - 279
  • [8] Strategies to improve the description of metal-ligand interactions in biomolecular simulations.
    Melse, O.
    Antes, I.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2019, 48 : S201 - S201
  • [9] EXPLORING HIV FUNCTIONAL CURE WITH MECHANISTIC MODELING AND CLINICAL TRIAL SIMULATIONS.
    Bae, I.
    Rosenbloom, D.
    Ahamadi, M.
    Cao, Y.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 : S116 - S117
  • [10] HELIUM REIONIZATION SIMULATIONS. I. MODELING QUASARS AS RADIATION SOURCES
    La Plante, Paul
    Hy Trac
    ASTROPHYSICAL JOURNAL, 2016, 828 (02):