Constant Mean Curvature Surfaces Based on Fundamental Quadrilaterals

被引:0
|
作者
Alexander I. Bobenko
Sebastian Heller
Nick Schmitt
机构
[1] TU Berlin,Institut für Mathematik
[2] Universität Hannover,Institut für Differentialgeometrie
关键词
CMC surface; Flat connections; DPW method; Tesselations; 53A10; 53C42; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the construction of CMC surfaces with symmetries in S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {S}^{3}$\end{document} and ℝ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{3}$\end{document} using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.
引用
收藏
相关论文
共 50 条
  • [1] Constant Mean Curvature Surfaces Based on Fundamental Quadrilaterals
    Bobenko, Alexander, I
    Heller, Sebastian
    Schmitt, Nick
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2021, 24 (04)
  • [2] SURFACES WITH CONSTANT MEAN CURVATURE
    HILDERBR.S
    MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (02) : 107 - &
  • [3] SURFACES OF CONSTANT MEAN CURVATURE
    WOLF, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (05) : 1103 - &
  • [4] Surfaces with constant mean curvature
    Perdomol, Oscar M.
    BOLETIN DE MATEMATICAS, 2011, 18 (02): : 157 - 182
  • [5] Constant mean curvature surfaces
    Meeks, William H., III
    Perez, Joaquin
    Tinaglia, Giuseppe
    ADVANCES IN GEOMETRY AND MATHEMATICAL PHYSICS, 2016, 21 : 179 - +
  • [6] On curvature estimates for constant mean curvature surfaces
    Tinaglia, Giuseppe
    GEOMETRIC ANALYSIS: PARTIAL DIFFERENTIAL EQUATIONS AND SURFACES, 2012, 570 : 165 - 185
  • [7] CURVATURE ESTIMATES FOR CONSTANT MEAN CURVATURE SURFACES
    Meeks, William H., III
    Tinaglia, Giuseppe
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (16) : 3057 - 3102
  • [8] New constant mean curvature surfaces
    Kilian, M
    McIntosh, I
    Schmitt, N
    EXPERIMENTAL MATHEMATICS, 2000, 9 (04) : 595 - 611
  • [9] Surfaces of constant mean curvature.
    Eisenhart, LP
    AMERICAN JOURNAL OF MATHEMATICS, 1903, 25 : 383 - 396
  • [10] On the nondegeneracy of constant mean curvature surfaces
    Korevaar, N.
    Kusner, R.
    Ratzkin, J.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (04) : 891 - 923