Classification of left-invariant Einstein metrics on SL(2,R)×SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(2,\mathbb {R})\times \textrm{SL}(2,\mathbb {R})$$\end{document} that are bi-invariant under a one-parameter subgroup

被引:0
|
作者
Vicente Cortés
Jeremias Ehlert
Alexander S. Haupt
David Lindemann
机构
[1] University of Hamburg,Department of Mathematics and Center for Mathematical Physics
[2] Aarhus University,Department of Mathematics
关键词
Special linear group; Einstein manifolds; Non-compact homogeneous pseudo-Riemannian manifolds; 53C25; 53C30;
D O I
10.1007/s10455-023-09890-4
中图分类号
学科分类号
摘要
We classify all left-invariant pseudo-Riemannian Einstein metrics on SL(2,R)×SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(2,\mathbb {R})\times \textrm{SL}(2,\mathbb {R})$$\end{document} that are bi-invariant under a one-parameter subgroup. We find that there are precisely two such metrics up to homothety, the Killing form and a nearly pseudo-Kähler metric.
引用
收藏
相关论文
共 50 条