共 50 条
- [1] Invariant Projective Properties Under the Action of the Lie Group SL(3;R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(3;\mathbb {R})$$\end{document} on RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}\mathbb{P}^2$$\end{document} Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2023, 93 (2) : 301 - 314
- [2] On The Continuous Series for sl(2,R)^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\widehat{sl(2,{\mathbb{R}})}}}$$\end{document} Communications in Mathematical Physics, 2014, 326 (1) : 145 - 165
- [3] Anosov–Katok Constructions for Quasi-Periodic SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(2,{{\mathbb {R}}})$$\end{document} Cocycles Peking Mathematical Journal, 2024, 7 (1) : 203 - 245
- [4] Translators of the Mean Curvature Flow in the Special Linear Group SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(2,\mathbb {R})$$\end{document} Results in Mathematics, 2025, 80 (2)
- [5] SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb{R})}$$\end{document} -invariant probability measures on the moduli spaces of translation surfaces are regular Geometric and Functional Analysis, 2013, 23 (6) : 1705 - 1729
- [6] Packings by translation balls in SL2(R)~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{{\rm SL}_2({\mathbb{R}})}}$$\end{document} Journal of Geometry, 2014, 105 (2) : 287 - 306
- [7] Small diameters and generators for arithmetic lattices in SL2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}_2(\mathbb {R})$$\end{document} and certain Ramanujan graphs The Ramanujan Journal, 2023, 62 (4) : 953 - 966
- [8] On the Biharmonic Curves in the Special Linear Group SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf{SL}}{\bf (2},{\mathbb{R}}{\bf )}}$$\end{document} Mediterranean Journal of Mathematics, 2016, 13 (1) : 443 - 457
- [9] Beurling’s theorem for SL(2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}) manuscripta mathematica, 2007, 123 (1)
- [10] The SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{SL}}(2,\mathbb {R})$$\end{document} totally constrained model: three quantization approaches General Relativity and Gravitation, 2014, 46 (8)