Self-similar solutions for the Schrödinger map equation

被引:0
|
作者
Pierre Germain
Jalal Shatah
Chongchun Zeng
机构
[1] New York University,Courant Institute of Mathematical Sciences
[2] Georgia Institute of Technology,School of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 264卷
关键词
Global Existence; Besov Space; Lorentz Space; Real Interpolation; Constant Gaussian Curvature;
D O I
暂无
中图分类号
学科分类号
摘要
We study in this article the equivariant Schrödinger map equation in dimension 2, from the Euclidean plane to the sphere. A family of self-similar solutions is constructed; this provides an example of regularity breakdown for the Schrödinger map. These solutions do not have finite energy, and hence do not fit into the usual framework for solutions. For data of infinite energy but small in some norm, we build up associated global solutions.
引用
收藏
页码:697 / 707
页数:10
相关论文
共 50 条
  • [1] More self-similar solutions of the nonlinear Schrödinger equation
    Thierry Cazenave
    Fred. B. Weissler
    Nonlinear Differential Equations and Applications NoDEA, 1998, 5 : 355 - 365
  • [2] Breathers of the nonlinear Schrödinger equation are coherent self-similar solutions
    Slunyaev, Alexey V.
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 474
  • [3] Self-similar solutions of Schrödinger flows
    Weiyue Ding
    Hongyan Tang
    Chongchun Zeng
    Calculus of Variations and Partial Differential Equations, 2009, 34
  • [4] Exact solutions and self-similar symmetries of a nonlocal nonlinear Schrödinger equation
    Theodoros P. Horikis
    The European Physical Journal Plus, 135
  • [5] Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane
    Francisco de la Hoz
    Mathematische Zeitschrift, 2007, 257 : 61 - 80
  • [6] Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients
    Kruglov, V.I.
    Peacock, A.C.
    Harvey, J.D.
    Physical Review Letters, 2003, 90 (11) : 1 - 113902
  • [7] Self-similar solutions of equations of the nonlinear Schrödinger type
    V. G. Marikhin
    A. B. Shabat
    M. Boiti
    F. Pempinelli
    Journal of Experimental and Theoretical Physics, 2000, 90 : 553 - 561
  • [8] On Self-Similar Solutions to a Kinetic Equation Arising in Weak Turbulence Theory for the Nonlinear Schrödinger Equation
    A. H. M. Kierkels
    J. J. L. Velázquez
    Journal of Statistical Physics, 2016, 163 : 1350 - 1393
  • [9] Computation of Self-similar Solution Profiles for the Nonlinear Schrödinger Equation
    C. Budd
    O. Koch
    E. Weinmüller
    Computing, 2006, 77 : 335 - 346
  • [10] Self-similar solutions for the Schrodinger map equation
    Germain, Pierre
    Shatah, Jalal
    Zeng, Chongchun
    MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) : 697 - 707