Community Detection in Complex Networks Using Nonnegative Matrix Factorization and Density-Based Clustering Algorithm

被引:0
|
作者
Hong Lu
Qinghua Zhao
Xiaoshuang Sang
Jianfeng Lu
机构
[1] Nanjing University of Science and Technology,School of Computer Science
[2] Nanjing University of Finance and Economics,College of Information Engineering
来源
Neural Processing Letters | 2020年 / 51卷
关键词
Community detection; Nonnegative matrix factorization; Density peak clustering; NNDSVD;
D O I
暂无
中图分类号
学科分类号
摘要
Community detection is a critical issue in the field of complex networks. Capable of extracting inherent patterns and structures in high dimensional data, the non-negative matrix factorization (NMF) method has become one of the hottest research topics in community detection recently. However, this method has a significant drawback; most community detection methods using NMF require the number of communities to be preassigned or determined by searching for the best community structure among all candidates. To address the problem, in this paper, we use an improved density peak clustering to obtain the number of cores as the pre-defined parameter of nonnegative matrix factorization. Then we adopt nonnegative double singular value decomposition initialization which can rapidly reduce the approximation error of nonnegative matrix factorization. Finally, we compare and analyze the performance of different algorithms on artificial networks and real-world networks. Experimental results indicate that the proposed method is superior to the state-of-the-art methods.
引用
收藏
页码:1731 / 1748
页数:17
相关论文
共 50 条
  • [1] Community Detection in Complex Networks Using Nonnegative Matrix Factorization and Density-Based Clustering Algorithm
    Lu, Hong
    Zhao, Qinghua
    Sang, Xiaoshuang
    Lu, Jianfeng
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1731 - 1748
  • [2] Community Detection Algorithm Based on Nonnegative Matrix Factorization and Improved Density Peak Clustering
    Lu, Hong
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Jianfeng
    IEEE ACCESS, 2020, 8 : 5749 - 5759
  • [3] Community detection in complex networks using density-based clustering algorithm and manifold learning
    You, Tao
    Cheng, Hui-Min
    Ning, Yi-Zi
    Shia, Ben-Chang
    Zhang, Zhong-Yuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 464 : 221 - 230
  • [4] Community detection in complex networks by density-based clustering
    Jin, Hong
    Wang, Shuliang
    Li, Chenyang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) : 4606 - 4618
  • [5] A Survey of Community Detection in Complex Networks Using Nonnegative Matrix Factorization
    He, Chaobo
    Fei, Xiang
    Cheng, Qiwei
    Li, Hanchao
    Hu, Zeng
    Tang, Yong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (02) : 440 - 457
  • [6] A Density-based Clustering Model for Community Detection in Complex Networks
    Zhao, Xiang
    Li, Yantao
    Qu, Zehui
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [7] Community detection method using improved density peak clustering and nonnegative matrix factorization
    Lu, Hong
    Shen, Zhu
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Jianfeng
    NEUROCOMPUTING, 2020, 415 : 247 - 257
  • [8] Incremental Density-Based Link Clustering Algorithm for Community Detection in Dynamic Networks
    Meng, Fanrong
    Zhang, Feng
    Zhu, Mu
    Xing, Yan
    Wang, Zhixiao
    Shi, Jihong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [9] Community Detection in Temporal Networks Using Triple Nonnegative Matrix Factorization
    Liu, Hai-fu
    Yuan, Li-meng-zi
    INTERNATIONAL CONFERENCE ON MATHEMATICS, MODELLING AND SIMULATION TECHNOLOGIES AND APPLICATIONS (MMSTA 2017), 2017, 215 : 499 - 505
  • [10] Community detection algorithm based on nonnegative matrix factorization and pairwise constraints
    Lu, Hong
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Jianfeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545