Binding number and minimum degree for the existence of (g,f,n)-critical graphs

被引:18
|
作者
Liu H. [1 ,2 ]
Liu G. [1 ]
机构
[1] School of Mathematics, Shandong University, Jinan
[2] School of Mathematics and Informational Science, Yantai University, Yantai
基金
中国国家自然科学基金;
关键词
(g; f)-Factor; f; n)-Critical graph; Binding number; Graph; Minimum degree;
D O I
10.1007/s12190-008-0125-5
中图分类号
学科分类号
摘要
Let G be a graph of order p. The binding number of G is defined as bind}(G):=min NG(X)|}/{|X|} θ ≠ X ⊂ V(G) and}N G(X) ≠ V(G)}. Let g(x) and f(x) be two nonnegative integer-valued functions defined on V(G) with g(x) ≤ f(x) for any x V(G). A graph G is said to be (g,f,n)-critical if G-N has a (g,f)-factor for each N ⊂ V(G) with |N|=n. If g(x) = a and f(x) = b for all x V(G), then a (g,f,n)-critical graph is an (a,b,n)-critical graph. In this paper, several sufficient conditions on binding number and minimum degree for graphs to be (a,b,n)-critical or (g,f,n)-critical are given. Moreover, we show that the results in this paper are best possible in some sense.
引用
收藏
页码:207 / 216
页数:9
相关论文
共 50 条
  • [1] Independence Number and Minimum Degree for the Existence of (g, f, n)-Critical Graphs
    Zhou, Sizhong
    Pan, Quanru
    Xu, Yang
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 373 - 381
  • [2] Minimum degree of graphs and (g,f,n)-critical graphs
    Zhou, Sizhong
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 1871 - 1873
  • [4] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [5] An existence theorem on fractional (g, f, n)-critical graphs
    Sun, Zhiren
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2017, 102 : 105 - 112
  • [6] Neighbor Set for the Existence of (g, f, n)-Critical Graphs
    Liu, Hongxia
    Liu, Guizhen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (01) : 39 - 49
  • [7] Binding Number, Minimum Degree and Bipancyclism in Bipartite Graphs
    SUN Jing
    HU Zhiquan
    WuhanUniversityJournalofNaturalSciences, 2016, 21 (05) : 448 - 452
  • [8] Binding Number, Minimum Degree, and Cycle Structure in Graphs
    Bauer, D.
    Schmeichel, E.
    JOURNAL OF GRAPH THEORY, 2012, 71 (02) : 219 - 228
  • [9] Binding number and minimum degree for fractional ID-k-factor-critical graphs
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2016, 99 : 273 - 280
  • [10] BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (5-6): : 435 - 441