On Beurling’s boundary differential relation

被引:0
|
作者
Miran Černe
Manuel Flores
机构
[1] University of Ljubljana,Department of Mathematics
[2] University of La Laguna,Department of Mathematics
来源
关键词
Univalent Solution; Holomorphic Function; Free Boundary; Univalent Function; Riemann Mapping;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for an arbitrary positive continuous function Φ on the complex plane ℂ there exists an injective disc algebra function φ and n ∈ ℕ such that ξ ↦ φ(ξn) solves Beurling’s boundary differential relation |f′(ξ)| = Φ(f(ξ)) on ∂Δ. Moreover, if the growth of Φ is sublinear, the existence of univalent solutions of Beurling’s boundary differential relation is shown.
引用
收藏
页码:831 / 840
页数:9
相关论文
共 50 条