Versal deformations and versality in central extensions of Jacobi schemes

被引:0
|
作者
Roger Carles
Toukaiddine Petit
机构
[1] Université de Poitiers,UMR 6086 du CNRS, Laboratoire de Mathématiques et Applications
[2] Universiteit Antwerpen,Departement Wiskunde en Informatica
来源
Transformation Groups | 2009年 / 14卷
关键词
Local Ring; Central Extension; Maximal Torus; Jacobi Polynomial; Versal Deformation;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{L}_m $\end{document} be the scheme of the laws defined by the Jacobi identities on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{K}^m $\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{K}$\end{document} a field. A deformation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g} \in \mathfrak{L}_m $\end{document}, parametrized by a local ring A, is a local morphism from the local ring of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{L}_m $\end{document} at ϕm to A. The problem of classifying all the deformation equivalence classes of a Lie algebra with given base is solved by “versal” deformations. First, we give an algorithm for computing versal deformations. Second, we prove there is a bijection between the deformation equivalence classes of an algebraic Lie algebra ϕm = R ⋉ φn in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{L}_m $\end{document} and its nilpotent radical φn in the R-invariant scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{L}_{n}^{\rm R} $\end{document} with reductive part R, under some conditions. So the versal deformations of ϕm in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{L}_m $\end{document} are deduced from those of φn in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{L}_{n}^{\rm R} $\end{document}, which is a more simple problem. Third, we study versality in central extensions of Lie algebras. Finally, we calculate versal deformations of some Lie algebras.
引用
收藏
页码:287 / 317
页数:30
相关论文
共 50 条