Second-Order Time-Dependent Tangent Bundles and Geometric Mechanics

被引:0
|
作者
Ali Suri
机构
[1] Bu-Ali Sina University,Department of Mathematics, Faculty of Sciences
来源
关键词
semisprays; connections; time-dependent Lagrangian; second-order tangent bundle; Primary 58B20; Secondary 58A05;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to geometrize time-dependent Lagrangian mechanics in a way that the framework of second-order tangent bundles plays an essential role. To this end, we first introduce the concepts of time-dependent connections and time-dependent semisprays on a manifold M and their induced vector bundle structures on the second-order time-dependent tangent bundle R×T2M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}\times T^2M$$\end{document}. Then we turn our attention to regular time-dependent Lagrangians and their interaction with R×T2M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}\times T^2M$$\end{document} in different situations such as mechanical systems with potential fields, external forces and holonomic constraints. Finally, we propose some examples to support our theory.
引用
收藏
相关论文
共 50 条
  • [1] Second-Order Time-Dependent Tangent Bundles and Geometric Mechanics
    Suri, Ali
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (04)
  • [2] Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
    Gezer, Aydin
    Magden, Abdullah
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (04) : 985 - 998
  • [3] Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
    Aydin GEZER
    Abdullah MAGDEN
    Chinese Annals of Mathematics,Series B, 2017, (04) : 985 - 998
  • [4] Geometry of the second-order tangent bundles of Riemannian manifolds
    Aydin Gezer
    Abdullah Magden
    Chinese Annals of Mathematics, Series B, 2017, 38 : 985 - 998
  • [5] Separability of time-dependent second-order equations
    Sarlet, W
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 363 - 371
  • [6] NOTES ON THE SECOND-ORDER TANGENT BUNDLES WITH THE DEFORMED SASAKI METRIC
    Karaca, Kubra
    Gezer, Aydin
    Magden, Abdullah
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 502 - 517
  • [7] Some Problems Concerning with Sasaki Metric on the Second-Order Tangent Bundles
    Magden, Abdullah
    Gezer, Aydin
    Karaca, Kubra
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 75 - 86
  • [8] Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    NUMERISCHE MATHEMATIK, 2020, 145 (04) : 883 - 913
  • [9] Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping
    Bangti Jin
    Buyang Li
    Zhi Zhou
    Numerische Mathematik, 2020, 145 : 883 - 913
  • [10] Applying second-order adjoint perturbation theory to time-dependent problems
    Gilli, L.
    Lathouwers, D.
    Kloosterman, J. L.
    van der Hagen, T. H. J. J.
    ANNALS OF NUCLEAR ENERGY, 2013, 53 : 9 - 18